Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemical Engineering

Quantification Of Factors Governing Drug Release Kinetics From Nanoparticles: A Combined Experimental And Mechanistic Modeling Approach, Kyle Daniel Fugit Jan 2014

Quantification Of Factors Governing Drug Release Kinetics From Nanoparticles: A Combined Experimental And Mechanistic Modeling Approach, Kyle Daniel Fugit

Theses and Dissertations--Pharmacy

Advancements in nanoparticle drug delivery of anticancer agents require mathematical models capable of predicting in vivo formulation performance from in vitro characterization studies. Such models must identify and incorporate the physicochemical properties of the therapeutic agent and nanoparticle driving in vivo drug release. This work identifies these factors for two nanoparticle formulations of anticancer agents using an approach which develops mechanistic mathematical models in conjunction with experimental studies.

A non-sink ultrafiltration method was developed to monitor liposomal release kinetics of the anticancer agent topotecan. Mathematical modeling allowed simultaneous determination of drug permeability and interfacial binding to the bilayer from release …


Generation Of Multicomponent Polymer Blend Microparticles Using Droplet Evaporation Technique And Modeling Evaporation Of Binary Droplet Containing Non-Volatile Solute, Venkat N. Rajagopalan Jan 2014

Generation Of Multicomponent Polymer Blend Microparticles Using Droplet Evaporation Technique And Modeling Evaporation Of Binary Droplet Containing Non-Volatile Solute, Venkat N. Rajagopalan

Theses and Dissertations--Chemical and Materials Engineering

Recently, considerable attention has been focused on the generation of nano- and micrometer scale multicomponent polymer particles with specifically tailored mechanical, electrical and optical properties. As only a few polymer-polymer pairs are miscible, the set of multicomponent polymer systems achievable by conventional methods, such as melt blending, is severely limited in property ranges. Therefore, researchers have been evaluating synthesis methods that can arbitrarily blend immiscible solvent pairs, thus expanding the range of properties that are practical. The generation of blended microparticles by evaporating a co-solvent from aerosol droplets containing two dissolved immiscible polymers in solution seems likely to exhibit a …


Nanofiltration Membranes From Oriented Mesoporous Silica Thin Films, Mary K. Wooten Jan 2014

Nanofiltration Membranes From Oriented Mesoporous Silica Thin Films, Mary K. Wooten

Theses and Dissertations--Chemical and Materials Engineering

The synthesis of mesoporous silica thin films using surfactant templating typically leads to an inaccessible pore orientation, making these films not suitable for membrane applications. Recent advances in thin film synthesis provide for the alignment of hexagonal pores in a direction orthogonal to the surface when templated on chemically neutral surfaces. In this work, orthogonal thin film silica membranes are synthesized on alumina supports using block copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123) as the template. The orthogonal pore structure is achieved by sandwiching membranes between two chemically neutral surfaces, resulting in 90 nm thick films. Solvent flux of ethanol through …