Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Thermodynamics

Degree of coupling

Articles 1 - 2 of 2

Full-Text Articles in Chemical Engineering

Modeling Of Thermodynamically Coupled Reaction-Transport Systems, Yaşar Demirel May 2008

Modeling Of Thermodynamically Coupled Reaction-Transport Systems, Yaşar Demirel

Yaşar Demirel Publications

Nonisothermal reaction-diffusion systems control the behavior of many transport and rate processes in physical, chemical and biological systems, such as pattern formation and chemical pumps. Considerable work has been published on mathematically coupled nonlinear differential equations by neglecting thermodynamic coupling between a chemical reaction and transport processes of mass and heat. This study presents the modeling of thermodynamically coupled system of a simple elementary chemical reaction with molecular heat and mass transport. The thermodynamic coupling refers that a flow occurs without or against its primary thermodynamic driving force, which may be a gradient of temperature or chemical potential or reaction …


Exergy Use In Bioenergetics, Yaşar Demirel Nov 2004

Exergy Use In Bioenergetics, Yaşar Demirel

Papers in Analytical Chemistry

Every developed and adapted biological system extracts useful energy from outside, converts, stores it, and uses for muscular contraction, substrate transport, protein synthesis, and other energy utilizing processes. This energy management in a living cell is called the bioenergetics, and the useful energy is the exergy, which is destroyed in every irreversible process because of the entropy production. The converted exergy is the adenosine triphosphate (ATP) produced through the oxidative phosphorylation coupled to respiration in which the exergy originates from oxidation of reducing equivalents of nutrients. A living cell uses the ATP for all the energy demanding activities; it has …