Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

University of Kentucky

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 57

Full-Text Articles in Chemical Engineering

Molecular Understanding And Design Of Deep Eutectic Solvents And Proteins Using Computer Simulations And Machine Learning, Usman Lame Abbas Jan 2024

Molecular Understanding And Design Of Deep Eutectic Solvents And Proteins Using Computer Simulations And Machine Learning, Usman Lame Abbas

Theses and Dissertations--Chemical and Materials Engineering

Hydrophobic deep eutectic solvents (DESs) have emerged as excellent extractants. A major challenge is the lack of an efficient tool to discover DES candidates. Currently, the search relies heavily on the researchers’ intuition or a trial-and-error process, which leads to a low success rate or bypassing of promising candidates. DES performance depends on the heterogeneous hydrogen bond environment formed by multiple hydrogen bond donors and acceptors. Understanding this heterogeneous hydrogen bond environment can help develop principles for designing high performance DESs for extraction and other separation applications. This work investigates the structure and dynamics of hydrogen bonds in hydrophobic DESs …


Impact Of Spallation And Internal Radiation On Fibrous Ablative Materials, Raghava Sai Chaitanya Davuluri Jan 2023

Impact Of Spallation And Internal Radiation On Fibrous Ablative Materials, Raghava Sai Chaitanya Davuluri

Theses and Dissertations--Mechanical Engineering

Space vehicles are equipped with Thermal Protection Systems (TPS) that encounter high heat rates and protect the payload while entering a planetary atmosphere. For most missions that interest NASA, ablative materials are used as TPS. These materials undergo several mass and energy transfer mechanisms to absorb intense heat. The size and construction of the TPS are based on the composition of the planetary atmosphere and the impact of various ablative mechanisms on the flow field and the material. Therefore, it is essential to quantify the rates of different ablative phenomena to model TPS accurately. In this work, the impact of …


Molecular Understanding Of Zwitterions And Quantum Computing For Sustainability, Manh Tien Nguyen Jan 2023

Molecular Understanding Of Zwitterions And Quantum Computing For Sustainability, Manh Tien Nguyen

Theses and Dissertations--Chemical and Materials Engineering

The sustainable development of society needs sustainable energy solutions and the mitigation of greenhouse gas emissions. One key subject in this area is the development of safe and efficient ion-based batteries. Moreover, CO2 capture is a crucial pathway in mitigating emissions from the combustion of fossil fuels. Ongoing efforts are to improve both technologies' safety and efficiency. This thesis presents our efforts to conduct computational research on understanding advanced zwitterionic electrolytes and CO2 capture. Chapters 2-4 illustrate the computational research to understand ionic solvation in zwitterionic electrolytes. Solid-state electrolytes are essential for safer batteries. While solid polymer electrolytes …


Scale Modeling Of An Appearance Of Downwash Pattern Of Hot Smoke Ejected From Chimney In The Turbulent Cross Flow, Xangpheuak Inthavideth, Nobumasa Sekishita, Sounthisack Phommachanh, Yuji Nakamura Nov 2022

Scale Modeling Of An Appearance Of Downwash Pattern Of Hot Smoke Ejected From Chimney In The Turbulent Cross Flow, Xangpheuak Inthavideth, Nobumasa Sekishita, Sounthisack Phommachanh, Yuji Nakamura

Progress in Scale Modeling, an International Journal

This study aims to elucidate the scaling law to provide the critical condition on appearance of the downwash pattern of the hot smoke ejected from a chimney in a turbulent cross flow. A specially designed wind tunnel with an active turbulence generator developed by Makita was adopted to offer a quasi-isotropic turbulence field in a lab-scale test facility. A heated jet with smoke is issued into the cross flow from the vertically oriented chimney placed in the test section of the wind tunnel. In this study, the experimental parameters considered are temperature of the heated jet (smoke), jet ejected velocity, …


A Cfd-Based Scaling Analysis On Liquid And Paint Droplets Moving Through A Weak Concurrent Airflow Stream, Masoud Arabghahestani, Nelson Akafuah, Tianxiang Li, Kozo Saito Sep 2022

A Cfd-Based Scaling Analysis On Liquid And Paint Droplets Moving Through A Weak Concurrent Airflow Stream, Masoud Arabghahestani, Nelson Akafuah, Tianxiang Li, Kozo Saito

Progress in Scale Modeling, an International Journal

We conducted volume of fluids (VOF) multiphase model numerical simulations to obtain the interaction among all the major governing forces identified in our previous paper. Our numerical experiments are intended to assess the droplet generation process and the jetting behavior by providing specific input conditions, offering CFD as a tool to study scaling correlations instead of physical experiments. Water droplets that can represent waterborne paints were generated by piezo-generated sinusoidal waveforms at the inlet of the nozzle. The governing forces included the external piezo-based wave-generation force, the inertial force of droplets, the inertial force of air, the viscose force of …


Photocatalytic Degradation Of Lignin By Supported Silver Nanoparticles, Ning Wei Jan 2022

Photocatalytic Degradation Of Lignin By Supported Silver Nanoparticles, Ning Wei

Theses and Dissertations--Chemical and Materials Engineering

Lignin is the second most abundant form of biomass on earth. The phenolic structure and high carbon to oxygen ratio make lignin an attractive renewable source of fuel and chemicals. However, its recalcitrance and heterogeneous nature prove difficult for decomposing lignin’s polymer structure and separation of the products. This work has focused on the use of low-energy catalytic approaches to overcome these barriers. A mimic of the lignin degrading enzyme laccase, consisting of a copper cluster Cu4Py4I4 modified with AgNO3, was developed to function similarly to the laccase active site. The prepared copper complex solution was found to be active …


Scale Model Equations And Optimization For Annular Flow Of Non-Newtonian Fluids Between Eccentric And Rotating Cylinders, Wei Zhang, Pooya Khodaparast, Amin Mehrabian Dr., Amir Shojaei Dec 2021

Scale Model Equations And Optimization For Annular Flow Of Non-Newtonian Fluids Between Eccentric And Rotating Cylinders, Wei Zhang, Pooya Khodaparast, Amin Mehrabian Dr., Amir Shojaei

Progress in Scale Modeling, an International Journal

A broad range of engineering applications involves helical flow of non-Newtonian fluids between two eccentric cylinders. These applications often require estimation of the frictional pressure losses along the axes of the cylinders. Laboratory flow loops are commonly used to study the flow characteristics at smaller scales of investigation. This study uses the laws of similarity and dimensional analysis to obtain a set of scaling equations between the laboratory and prototype scales of the described annular flow. These equations are derived for four types of fluid rheology including Newtonian, power-law, Bingham-plastic, and yield power-law.

Results are expressed through a set of …


Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


Hydrocracking Of Octacosane And Cobalt Fischer–Tropsch Wax Over Nonsulfided Nimo And Pt-Based Catalysts, Wenping Ma, Jungshik Kang, Gary Jacobs, Shelley D. Hopps, Burtron H. Davis Sep 2021

Hydrocracking Of Octacosane And Cobalt Fischer–Tropsch Wax Over Nonsulfided Nimo And Pt-Based Catalysts, Wenping Ma, Jungshik Kang, Gary Jacobs, Shelley D. Hopps, Burtron H. Davis

Center for Applied Energy Research Faculty and Staff Publications

The effect of activation environment (N2, H2 and H2S/H2) on the hydrocracking performance of a NiMo/Al catalyst was studied at 380 °C and 3.5 MPa using octacosane (C28). The catalyst physical structure and acidity were characterized by BET, XRD, SEM-EDX and FTIR techniques. The N2 activation generated more active nonsulfided NiMo/Al catalyst relative to the H2 or H2S activation (XC28, 70–80% versus 6–10%). For a comparison, a NiMo/Si-Al catalyst was also tested after normal H2 activation and showed higher activity at the same process …


Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Jul 2021

Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The radiative transfer equation (RTE) is strongly coupled to the material response code KATS. A P-1 approximation model of RTE is used to account for radiation heat transfer within the material. First, the verification of the RTE model is performed by comparing the numerical and analytical solutions. Next, the coupling scheme is validated by comparing the temperature profiles of pure conduction and conduction coupled with radiative emission. The validation study is conducted on Marschall et al. cases (radiant heating, arc-jet heating, and space shuttle entry), 3D Block, 2D IsoQ sample, and Stardust Return Capsule. The validation results agree well for …


Open-Field Scale-Model Experiments Of Fire Whirls Over L-Shaped Line Fires, Yuto Iga, Kazunori Kuwana, Kozo Sekimoto, Yuji Nakamura Feb 2021

Open-Field Scale-Model Experiments Of Fire Whirls Over L-Shaped Line Fires, Yuto Iga, Kazunori Kuwana, Kozo Sekimoto, Yuji Nakamura

Progress in Scale Modeling, an International Journal

This paper presents the results of open-field scale-model experiments of fire-whirl formation over line fires. L-shaped line fires were burned in crosswinds, and the processes of fire-whirl formation were observed. The flame height was measured using an image-processing technique, while two-dimensional velocity components were measured at two different locations using ultrasonic anemometers. Two tests were selected for comparison: test A, in which intense fire whirls repeatedly formed, and test B, in which no whirls were observed. In test A, the wind flow was bent by the fire plume, creating swirling flows near the burning area, thereby forming fire whirls. On …


Effects Of Dimensionless Numbers On Decomposition Of Methane Hydrate, Shoma Shimizu, Genichiro Kushida Feb 2021

Effects Of Dimensionless Numbers On Decomposition Of Methane Hydrate, Shoma Shimizu, Genichiro Kushida

Progress in Scale Modeling, an International Journal

It is necessary to elucidate the decomposition and combustion of methane hydrate for fire safety during transportation and storage to utilize it for commercial practice. The amount of methane evolved during the decomposition of methane hydrates is affected by the conditions such as the initial temperature, initial density and ambient temperature. In the present study, the internal temperature of methane hydrate and the amount of methane evolved during its decomposition were investigated by a dimensionless numerical analysis using a transient one-dimensional conduction model from a symmetrical methane hydrate ball heated by ambient air. The numerically calculated central temperature and the …


A Study On Fire Hazards Of Oil Tanks In Urban Areas With Scale Model Experiments, Ho Yin Ng, Yu Wan, Wan Ki Chow Feb 2021

A Study On Fire Hazards Of Oil Tanks In Urban Areas With Scale Model Experiments, Ho Yin Ng, Yu Wan, Wan Ki Chow

Progress in Scale Modeling, an International Journal

Large fuel tanks are located in an urban area of Tsing Yi in Hong Kong, giving potentially high risks to people living nearby if a fire was to occur. Scale modeling experiments were carried out to investigate the potential of fire hazards. Propanol pool fires with five different scales of oil tanks were studied first. Appropriate tank sizes were then put in a 1/2500 architectural scale model on the Tsing Yi Island to study a fuel tank fire. Results show that the heat and smoke from a fire would affect occupants staying in areas near to the fuel tanks. Fire …


Fingering Behavior Of Flame Spread Over Solid Combustibles, Tsuneyoshi Matsuoka, Kentaro Nakashima, Takuma Kajimoto, Akihiro Yoshimasa, Yuji Nakamura Feb 2021

Fingering Behavior Of Flame Spread Over Solid Combustibles, Tsuneyoshi Matsuoka, Kentaro Nakashima, Takuma Kajimoto, Akihiro Yoshimasa, Yuji Nakamura

Progress in Scale Modeling, an International Journal

In this study, the fingering pattern formation and the following flamelet spreading over three different kinds of thick combustibles, i.e., Poly methacrylate (PMMA), Poly ethylene (PE) and Poly carbonate (PC) were observed and the effective Lewis number correlation was validated. Experiments were performed with a narrow channel apparatus. In addition to the kinds of solid fuel materials, the channel height and the oxidizer velocity were varied as experimental parameters. An image analysis method was developed to quantify the number, diameter and spread rate of the flamelets. Replacing the fuel thickness into the thermal thickness, the effective Lewis number which is …


Data-Driven Tools Guided By First-Principles For Scale Modeling, Sadegh Poozesh Jan 2021

Data-Driven Tools Guided By First-Principles For Scale Modeling, Sadegh Poozesh

Progress in Scale Modeling, an International Journal

For decades, traditional scale-modeling techniques have been relying on first-principles models (FPMs). FPMs have been used to find non-dimensional numbers (PIs) and identify normalized underlying forces and energies behind the phenomenon in focus. The two main challenges with FPM-based PIs extraction are finding the relevant PIs and proper correlations between PIs. The emergence and surge of data-driven modeling (DDM) provide a new opportunity to leverage experimental data in model development across scales/plants. In this paper, first, the two mentioned issues in PIs development will be elaborated to reveal the gap, and second, a new insight into scale modeling and similarity …


Review On Carbon Dioxide Utilization For Cycloaddition Of Epoxides By Ionic Liquid-Modified Hybrid Catalysts: Effect Of Influential Parameters And Mechanisms Insight, Jimmy Nelson Appaturi, Rajabathar. Jothi Ramalingam, Muthu Kumaran Gnanamani, Govindasami Periyasami, Prabhakarn Arunachalam, Rohana Adnan, Farook Adam, Mohammed D. Wasmiah, Hamad A. Al‐Lohedan Jan 2021

Review On Carbon Dioxide Utilization For Cycloaddition Of Epoxides By Ionic Liquid-Modified Hybrid Catalysts: Effect Of Influential Parameters And Mechanisms Insight, Jimmy Nelson Appaturi, Rajabathar. Jothi Ramalingam, Muthu Kumaran Gnanamani, Govindasami Periyasami, Prabhakarn Arunachalam, Rohana Adnan, Farook Adam, Mohammed D. Wasmiah, Hamad A. Al‐Lohedan

Center for Applied Energy Research Faculty and Staff Publications

The storage, utilization, and control of the greenhouse (CO2) gas is a topic of interest for researchers in academia and society. The present review article is dedicating to cover the overall role of ionic liquid-modified hybrid materials in cycloaddition reactions. Special emphasis is on the synthesis of various cyclic carbonate using ionic liquid-based modified catalysts. Catalytic activity studies have discussed with respect to process conditions and their effects on conversion and product selectivity for the reaction of cycloaddition of CO2 with styrene oxide. The reaction temperature and the partial pressure of CO2 have found to play …


Nanoceria Distribution And Effects Are Mouse-Strain Dependent, Robert A. Yokel, Michael T. Tseng, D. Allan Butterfield, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Arnold J. Stromberg, Alan K. Dozier, Uschi M. Graham Aug 2020

Nanoceria Distribution And Effects Are Mouse-Strain Dependent, Robert A. Yokel, Michael T. Tseng, D. Allan Butterfield, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Arnold J. Stromberg, Alan K. Dozier, Uschi M. Graham

Pharmaceutical Sciences Faculty Publications

Prior studies showed nanoparticle clearance was different in C57BL/6 versus BALB/c mice, strains prone to Th1 and Th2 immune responses, respectively. Objective: Assess nanoceria (cerium oxide, CeO2 nanoparticle) uptake time course and organ distribution, cellular and oxidative stress, and bioprocessing as a function of mouse strain. Methods: C57BL/6 and BALB/c female mice were i.p. injected with 10 mg/kg nanoceria or vehicle and terminated 0.5 to 24 h later. Organs were collected for cerium analysis; light and electron microscopy with elemental mapping; and protein carbonyl, IL-1β, and caspase-1 determination. Results: Peripheral organ cerium significantly increased, generally more …


Plasma And Serum Proteins Bound To Nanoceria: Insights Into Pathways By Which Nanoceria May Exert Its Beneficial And Deleterious Effects In Vivo, D. Allan Butterfield, Binghui Wang, Peng Wu, Sarita S. Hardas, Jason M. Unrine, Eric A. Grulke, Jian Cai, Jon B. Klein, William M. Pierce, Robert A. Yokel, Rukhsana Sultana Jul 2020

Plasma And Serum Proteins Bound To Nanoceria: Insights Into Pathways By Which Nanoceria May Exert Its Beneficial And Deleterious Effects In Vivo, D. Allan Butterfield, Binghui Wang, Peng Wu, Sarita S. Hardas, Jason M. Unrine, Eric A. Grulke, Jian Cai, Jon B. Klein, William M. Pierce, Robert A. Yokel, Rukhsana Sultana

Chemistry Faculty Publications

Nanoceria (CeO2, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. In blood, nanoceria becomes protein-coated, changing its surface properties to yield a different presentation to cells. There is little information on the interaction of nanoceria with blood proteins. The current study is the first to report the proteomics identification of plasma and serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum proteins interacting with nanoceria, proteins whose normal activities regulate numerous cell functions: antioxidant/detoxification, energy regulation, lipoproteins, signaling, complement, immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein folding, protease inhibition, adhesion, protein/RNA …


Low Temperature Liquid Metal Batteries For Energy Storage Applications, Cameron A. Lippert, Kunlei Liu, James Landon, Susan A. Odom, Nicolas E. Holubowitch Dec 2019

Low Temperature Liquid Metal Batteries For Energy Storage Applications, Cameron A. Lippert, Kunlei Liu, James Landon, Susan A. Odom, Nicolas E. Holubowitch

Center for Applied Energy Research Faculty Patents

The present invention relates to a molten metal battery of liquid bismuth and liquid tin electrodes and a eutectic electrolyte. The electrodes may be coaxial and coplanar. The eutectic electrolyte may be in contact with a surface of each electrode. The eutectic electrolyte may comprise ZnC12:KCI.


Zirconia-Based Compositions For Use In Passive NoX Adsorber Devices, Deborah Jayne Harris, David Alastair Scapens, John G. Darab, Mark Crocker, Yaying Ji Dec 2019

Zirconia-Based Compositions For Use In Passive NoX Adsorber Devices, Deborah Jayne Harris, David Alastair Scapens, John G. Darab, Mark Crocker, Yaying Ji

Chemistry Faculty Patents

A passive NOx adsorbent includes: palladium, platinum or a mixture thereof and a mixed or composite oxide including the following elements in percentage by weight, expressed in terms of oxide: 10-90% by weight zirconium and 0.1-50% by weight of least one of the following: a transition metal or a lanthanide series element other than Ce.

Although the passive NOx adsorbent can include Ce in an amount ranging from 0.1 to 20% by weight expressed in terms of oxide, advantages are obtained particularly in the case of low-Ce or a substantially Ce-free passive NOx adsorbent.


Computationally Aided Design Of A High-Performance Organic Semiconductor: The Development Of A Universal Crystal Engineering Core, Anthony J. Petty Ii, Qianxiang Ai, Jeni C. Sorli, Hamna F. Haneef, Geoffrey E. Purdum, Alex M. Boehm, Devin B. Granger, Kaichen Gu, Carla Patricia Lacerda Rubinger, Sean R. Parkin, Kenneth R. Graham, Oana D. Jurchescu, Yueh-Lin Loo, Chad Risko, John E. Anthony Oct 2019

Computationally Aided Design Of A High-Performance Organic Semiconductor: The Development Of A Universal Crystal Engineering Core, Anthony J. Petty Ii, Qianxiang Ai, Jeni C. Sorli, Hamna F. Haneef, Geoffrey E. Purdum, Alex M. Boehm, Devin B. Granger, Kaichen Gu, Carla Patricia Lacerda Rubinger, Sean R. Parkin, Kenneth R. Graham, Oana D. Jurchescu, Yueh-Lin Loo, Chad Risko, John E. Anthony

Chemistry Faculty Publications

Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene “universal crystal engineering core”. After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 V−1 s−1.


Photocatalytic Degradation Of Profenofos And Triazophos Residues In The Chinese Cabbage, Brassica Chinensis, Using Ce-Doped Tio2, Xiangying Liu, You Zhan, Zhongqin Zhang, Lang Pan, Lifeng Hui, Kailin Liu, Xuguo Zhou, Lianyang Bai Mar 2019

Photocatalytic Degradation Of Profenofos And Triazophos Residues In The Chinese Cabbage, Brassica Chinensis, Using Ce-Doped Tio2, Xiangying Liu, You Zhan, Zhongqin Zhang, Lang Pan, Lifeng Hui, Kailin Liu, Xuguo Zhou, Lianyang Bai

Entomology Faculty Publications

Pesticides have revolutionized the modern day of agriculture and substantially reduced crop losses. Synthetic pesticides pose a potential risk to the ecosystem and to the non-target organisms due to their persistency and bioaccumulation in the environment. In recent years, a light-mediated advanced oxidation processes (AOPs) has been adopted to resolve pesticide residue issues in the field. Among the current available semiconductors, titanium dioxide (TiO2) is one of the most promising photocatalysts. In this study, we investigated the photocatalytic degradation of profenofos and triazophos residues in Chinese cabbage, Brassica chinensis, using a Cerium-doped nano semiconductor TiO2 (TiO …


Fischer–Tropsch: Product Selectivity–The Fingerprint Of Synthetic Fuels, Wilson D. Shafer, Muthu Kumaran Gnanamani, Uschi M. Graham, Jia Yang, Cornelius M. Masuku, Gary Jacobs, Burtron H. Davis Mar 2019

Fischer–Tropsch: Product Selectivity–The Fingerprint Of Synthetic Fuels, Wilson D. Shafer, Muthu Kumaran Gnanamani, Uschi M. Graham, Jia Yang, Cornelius M. Masuku, Gary Jacobs, Burtron H. Davis

Center for Applied Energy Research Faculty and Staff Publications

The bulk of the products that were synthesized from Fischer–Tropsch synthesis (FTS) is a wide range (C1–C70+) of hydrocarbons, primarily straight-chained paraffins. Additional hydrocarbon products, which can also be a majority, are linear olefins, specifically: 1-olefin, trans-2-olefin, and cis-2-olefin. Minor hydrocarbon products can include isomerized hydrocarbons, predominantly methyl-branched paraffin, cyclic hydrocarbons mainly derived from high-temperature FTS and internal olefins. Combined, these products provide 80–95% of the total products (excluding CO2) generated from syngas. A vast number of different oxygenated species, such as aldehydes, ketones, acids, and alcohols, are also embedded in this product range. …


Effect Of Pt Promotion On The Ni-Catalyzed Deoxygenation Of Tristearin To Fuel-Like Hydrocarbons, Ryan Loe, Kelsey Huff, Morgan Walli, Tonya Morgan, Dali Qian, Robert Pace, Yang Song, Mark Isaacs, Eduardo Santillan-Jimenez, Mark Crocker Feb 2019

Effect Of Pt Promotion On The Ni-Catalyzed Deoxygenation Of Tristearin To Fuel-Like Hydrocarbons, Ryan Loe, Kelsey Huff, Morgan Walli, Tonya Morgan, Dali Qian, Robert Pace, Yang Song, Mark Isaacs, Eduardo Santillan-Jimenez, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

Pt represents an effective promoter of supported Ni catalysts in the transformation of tristearin to green diesel via decarbonylation/decarboxylation (deCOx), conversion increasing from 2% over 20% Ni/Al2O3 to 100% over 20% Ni-0.5% Pt/Al2O3 at 260 °C. Catalyst characterization reveals that the superior activity of Ni-Pt relative to Ni-only catalysts is not a result of Ni particle size effects or surface area differences, but rather stems from several other phenomena, including the improved reducibility of NiO when Pt is present. Indeed, the addition of a small amount of Pt to the supported Ni …


Carboxylic Acids Accelerate Acidic Environment-Mediated Nanoceria Dissolution, Robert A. Yokel, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Alan K. Dozier, Uschi M. Graham Feb 2019

Carboxylic Acids Accelerate Acidic Environment-Mediated Nanoceria Dissolution, Robert A. Yokel, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Alan K. Dozier, Uschi M. Graham

Pharmaceutical Sciences Faculty Publications

Ligands that accelerate nanoceria dissolution may greatly affect its fate and effects. This project assessed the carboxylic acid contribution to nanoceria dissolution in aqueous, acidic environments. Nanoceria has commercial and potential therapeutic and energy storage applications. It biotransforms in vivo. Citric acid stabilizes nanoceria during synthesis and in aqueous dispersions. In this study, citrate-stabilized nanoceria dispersions (∼4 nm average primary particle size) were loaded into dialysis cassettes whose membranes passed cerium salts but not nanoceria particles. The cassettes were immersed in iso-osmotic baths containing carboxylic acids at pH 4.5 and 37 °C, or other select agents. Cerium atom material …


Continuous Catalytic Deoxygenation Of Waste Free Fatty Acid-Based Feeds To Fuel-Like Hydrocarbons Over A Supported Ni-Cu Catalyst, Ryan Loe, Yasmeen Lavoignat, Miranda Maier, Mohanad Abdallah, Tonya Morgan, Dali Qian, Robert Pace, Eduardo Santillan-Jimenez, Mark Crocker Jan 2019

Continuous Catalytic Deoxygenation Of Waste Free Fatty Acid-Based Feeds To Fuel-Like Hydrocarbons Over A Supported Ni-Cu Catalyst, Ryan Loe, Yasmeen Lavoignat, Miranda Maier, Mohanad Abdallah, Tonya Morgan, Dali Qian, Robert Pace, Eduardo Santillan-Jimenez, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

While commercial hydrodeoxygenation (HDO) processes convert fats, oils, and grease (FOG) to fuel-like hydrocarbons, alternative processes based on decarboxylation/decarbonylation (deCOx) continue to attract interest. In this contribution, the activity of 20% Ni-5% Cu/Al2O3 in the deCOx of waste free fatty acid (FFA)-based feeds—including brown grease (BG) and an FFA feed obtained by steam stripping a biodiesel feedstock—was investigated, along with the structure-activity relationships responsible for Ni promotion by Cu and the structural evolution of catalysts during use and regeneration. In eight-hour experiments, near quantitative conversion of the aforementioned feeds to diesel-like hydrocarbons was achieved. …


Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman Oct 2018

Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman

Chemistry Faculty Publications

Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic …


Occurrence Of Chlorinated Volatile Organic Compounds (Vocs) In A Sanitary Sewer System: Implications For Assessing Vapor Intrusion Alternative Pathways, Mohammadyousef Roghani, Olivia P. Jacobs, Anthony Miller, Evan James Willett, James A. Jacobs, C. Ricardo Viteri, Elham Shirazi, Kelly G. Pennell Mar 2018

Occurrence Of Chlorinated Volatile Organic Compounds (Vocs) In A Sanitary Sewer System: Implications For Assessing Vapor Intrusion Alternative Pathways, Mohammadyousef Roghani, Olivia P. Jacobs, Anthony Miller, Evan James Willett, James A. Jacobs, C. Ricardo Viteri, Elham Shirazi, Kelly G. Pennell

Civil Engineering Faculty Publications

Sewer systems have been recently recognized as potentially important exposure pathways to consider during vapor intrusion assessments; however, this pathway has not been well-characterized and there is need for additional information about the occurrence of volatile organic compounds (VOCs) in sewer systems. This paper reports the results of sewer gas sampling conducted in a sanitary sewer over the years of 2014–2017. Sewer gas samples were collected and analyzed using several different techniques, including TO-15 (grab), TO-17 (passive), Radiello® (passive) and a novel continuous monitoring technique, the Autonomous Rugged Optical Multigas Analyzer (AROMA). The applicability of each of the different approaches …


Pressure-Driven Stabilization Of Capacitive Deionization, Landon S. Caudill Jan 2018

Pressure-Driven Stabilization Of Capacitive Deionization, Landon S. Caudill

Theses and Dissertations--Mechanical Engineering

The effects of system pressure on the performance stability of flow-through capacitive deionization (CDI) cells was investigated. Initial data showed that the highly porous carbon electrodes possessed air/oxygen in the micropores, and the increased system pressure boosts the gases solubility in saline solution and carries them out of the cell in the effluent. Upon applying a potential difference to the electrodes, capacitive-based ion adsorption occurs in competition with faradaic reactions that consume oxygen. Through the addition of backpressure, the rate of degradation decreases, allowing the cell to maintain its salt adsorption capacity (SAC) longer. The removal of oxygen from the …


Characterization Of Rotary Bell Atomizers Through Image Analysis Techniques, Jacob E. Wilson Jan 2018

Characterization Of Rotary Bell Atomizers Through Image Analysis Techniques, Jacob E. Wilson

Theses and Dissertations--Mechanical Engineering

Three methods were developed to better understand and characterize the near-field dynamic processes of rotary bell atomization. The methods were developed with the goal of possible integration into industry to identify equipment changes through changes in the primary atomization of the bell. The first technique utilized high-speed imaging to capture qualitative ligament breakup and, in combination with a developed image processing technique and PIV software, was able to gain statistical size and velocity information about both ligaments and droplets in the image data. A second technique, using an Nd:YAG laser with an optical filter, was used to capture size statistics …