Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Chemical Engineering

Broadband Dielectric Spectroscopic Detection Of Ethanol: A Side-By-Side Comparison Of Zno And Hkust-1 Mofs As Sensing Media, Papa K. Amoah, Zeinab Mohammed Hassan, Pengtao Lin, Engelbert Redel, Helmut Baumgart, Yaw S. Obeng Jan 2022

Broadband Dielectric Spectroscopic Detection Of Ethanol: A Side-By-Side Comparison Of Zno And Hkust-1 Mofs As Sensing Media, Papa K. Amoah, Zeinab Mohammed Hassan, Pengtao Lin, Engelbert Redel, Helmut Baumgart, Yaw S. Obeng

Electrical & Computer Engineering Faculty Publications

The most common gas sensors are based on chemically induced changes in electrical resistivity and necessarily involve making imperfect electrical contacts to the sensing materials, which introduce errors into the measurements. We leverage thermal- and chemical-induced changes in microwave propagation characteristics (i.e., S-parameters) to compare ZnO and surface-anchored metal-organic-framework (HKUST-1 MOF) thin films as sensing materials for detecting ethanol vapor, a typical volatile organic compound (VOC), at low temperatures. We show that the microwave propagation technique can detect ethanol at relatively low temperatures (<100 >°C), and afford new mechanistic insights that are inaccessible with the traditional dc-resistance-based measurements. In addition, …


Review Of Us And Eu Initiatives Toward Development, Demonstration, And Commercialization Of Lignocellulosic Biofuels, Venkatesh Balan, David Chiaramonti, Sandeep Kumar Jan 2013

Review Of Us And Eu Initiatives Toward Development, Demonstration, And Commercialization Of Lignocellulosic Biofuels, Venkatesh Balan, David Chiaramonti, Sandeep Kumar

Civil & Environmental Engineering Faculty Publications

Advanced biofuels produced from lignocellulosic biomass offer an exciting opportunity to produce renewable liquid transportation fuels, biochemicals, and electricity from locally available agriculture and forest residues. The growing interest in biofuels from lignocellulosic feedstock in the United States (US) and the European Union (EU) can provide a path forward toward replacing petroleum-based fuels with sustainable biofuels which have the potential to lower greenhouse gas (GHG) emissions. The selection of biomass conversion technologies along with feedstock development plays a crucial role in the commercialization of next-generation biofuels. There has been synergy and, even with similar basic process routes, diversity in the …