Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Chemical Engineering

Analysis Of The Effect Of Different Surface Preparation Methods On Corrosion Resistance And Adhesion Strength Of Astm A36 Steel Substrate With Surface Tolerant Epoxy Paint As Coating Material, Irwan Wijaya Santoso, Daffa Aqila, Rini Riastuti, Rizal Tresna Ramadhani May 2024

Analysis Of The Effect Of Different Surface Preparation Methods On Corrosion Resistance And Adhesion Strength Of Astm A36 Steel Substrate With Surface Tolerant Epoxy Paint As Coating Material, Irwan Wijaya Santoso, Daffa Aqila, Rini Riastuti, Rizal Tresna Ramadhani

Journal of Materials Exploration and Findings

In the industrial world, to extend the service life of materials, protection methods are carried out to slow down the material's corrosion rate. The protection method that is often used is the coating method. The coating method is a protection method by coating the substrate material using a coating material to prevent contact between the substrate material and the environment. In this research, the substrate material used is ASTM A36 steel and the coating material used is Surface Tolerant Epoxy paint. The independent variable used in this study lies in the surface preparation method which consists of: solvent cleaning, hand …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry Jan 2024

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

  1. How to Detect or Simulate the Dynamic Structural Changes of Complex Electrochemical Interfaces under In-Situ/Operando Conditions at the Microscale, and Establish Their Relationships with Macroscopic Electrochemical Performance?
  2. How to Understand and Regulate the Nucleation and Growth of Metal Lithium at the Anode, and Develop Strategies for Suppressing Dendrite Formation?
  3. How to Obtain High-Performance Alkali-Metal-Ion Solid-State Electrolytes for Solid State Batteries?
  4. How to Develop Aqueous Battery Systems with High Energy Density and Multi-Electron Transfer Reaction?
  5. How to Rationally Design Efficient and Long-Lasting Low/Non-Platinum Electrocatalysts and Their Large-Scale Production?
  6. How to Construct High-Efficiency Three-Phase Interface and Gain Insights into Enhanced Charge/Mass Transportation …


Corrosion Case Study On Pipeline, Kangze Ren Oct 2023

Corrosion Case Study On Pipeline, Kangze Ren

Corrosion Research

The Kashagan pipeline leaks were likely caused by sulfur stress corrosion cracking, a combined corrosion mechanism developed by the presence of high pressure, the high level of hydrogen sulfide(the main "ingredient" of sour gas), and poor metallurgical choice. Improper welding and poor metallurgical examination were blamed for causing the leaking issue. The purpose of the current review is to raise the alarm about the inappropriate corrosion management of Kashagan oil production and its societal and environmental consequences.


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Corrosion Case Study On Automobile, Grace Ajayi, Xinran Pan, Geethu Sasikala, Marshall S. Yang Apr 2023

Corrosion Case Study On Automobile, Grace Ajayi, Xinran Pan, Geethu Sasikala, Marshall S. Yang

Chemistry Publications

No abstract provided.


Development Of Battery Materials To Function As Corrosion Protection On Car Body Plates, Tubagus Noor Rohmannudin, Sulistijono Sulistijono, Noval Adrinanda, Faridz Wira Dharma, Samuel Areliano Jan 2023

Development Of Battery Materials To Function As Corrosion Protection On Car Body Plates, Tubagus Noor Rohmannudin, Sulistijono Sulistijono, Noval Adrinanda, Faridz Wira Dharma, Samuel Areliano

Journal of Materials Exploration and Findings

Most car bodies made for mass production are made from steel or aluminum. Both are strong metals, but steel is cheaper than aluminum and is more commonly used in lower-end cars for a broader consumer range. The weakness of steel compared to aluminum is that it is susceptible to corrosion under certain conditions, and thus it may deteriorate over time without proper care. To prevent corrosion, modern cars are coated with paint to prevent direct contact with the environment. As a second line of protection, a car battery can be connected to the body to create an impressed current cathodic …


Austenitic, Duplex, And Lean Duplex Stainless Steel Critical Pitting Temperature In Simulated Concrete Environment, Bobby Giebel Jan 2022

Austenitic, Duplex, And Lean Duplex Stainless Steel Critical Pitting Temperature In Simulated Concrete Environment, Bobby Giebel

Williams Honors College, Honors Research Projects

In this work, the critical pitting temperature (CPT) will be observed for a selection of austenitic (316LN and 24100) and duplex (2205), and lean duplex (2304, 2001) stainless steels in simulated concrete pore solution. To study the influence of temperature on the pitting stability of the stainless steels, three temperatures were tested: 25oC, 45oC, and 65oC for cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS). Electrochemical properties of the interfaces we studied via EIS analysis. Kinetics were studied via CPP testing. To reveal the critical pitting temperature of the stainless steels, cyclic thermammetry was used. Characterization of the pits …


Increasing The Corrosion Protection Of Aisi 1008 Carbon Steel By Surface Treatment With Unmodified And Benzotriazole Modified Sol-Gel Films, Shane Thomas Kelliher Jan 2021

Increasing The Corrosion Protection Of Aisi 1008 Carbon Steel By Surface Treatment With Unmodified And Benzotriazole Modified Sol-Gel Films, Shane Thomas Kelliher

Williams Honors College, Honors Research Projects

The corrosion performance of sol-gel coated AISI 1008 carbon steel was investigated in 3.5 wt% NaCl solutions of pH 7, 9, and 12 using electrochemical measurements. A corrosion inhibitor, benzotriazole (BTA) was added to the sol-gel mixture and tested as a second, modified sol-gel coating. Sol-gel films adhered evenly to metal samples and were characterized by FTIR spectroscopy. Electrochemical Impedance Spectroscopy (EIS) showed an increase in polarization resistance from blank to sol-gel coated samples (600-18,800,000 ohms). Cyclic polarization (CPP) curves showed positive hysteresis loops for blank and unmodified sol-gel coated samples which increased at high pH following the backward potential …


A Computational Investigation Of The Interstitial Oxidation Thermodynamics Of A Mo-Nb-Ta-W High Entropy Alloy Beyond The Dilute Regime, Adib J. Samin Dec 2020

A Computational Investigation Of The Interstitial Oxidation Thermodynamics Of A Mo-Nb-Ta-W High Entropy Alloy Beyond The Dilute Regime, Adib J. Samin

Faculty Publications

High entropy alloys (HEAs) are promising candidates for high-temperature structural material applications. Oxidation is a major factor that must be accounted for when designing such materials and it is thus important to study the oxidation behavior of HEAs to enable the optimum design of next generation materials. In this study, the thermodynamic behavior of interstitial oxygen in a Mo-Nb-Ta-W high entropy alloy was explored beyond the dilute limit. This was accomplished by sampling configurations of the HEA and HEA-oxygen systems from an isothermal–isobaric ensemble using a series of first-principle-based Monte Carlo simulations. It was found that the interstitial oxygen had …


Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates Aug 2020

Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates

Electronic Theses and Dissertations

As the interest and implementation of renewable energy accelerates, so does that of grid energy storage. It is widely believed that a cost-effective energy storage technology will bring about the proliferation of renewable energy. Redox flow battery (RFB) technology represents a promising solution to cost-effective grid energy storage. Compared to other technologies, RFBs have a long lifetime, high efficiency, are non-flammable, significantly reduce cost, and separately scale power and energy. The separation of power and energy enables increased energy capacity by simply adding electrolyte volume. Of the challenges facing RFB technology, one readily apparent is the cost of the active …


An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel Jan 2019

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel

Nuclear Engineering ETDs

Renewed interest in molten salt reactor technology has brought to light the need for a better understanding of FLiBe corrosion. To this end a flowing FLiBe corrosion test loop was designed to test the flow effects of FLiBe corrosion. The loop consists of a pump, melt tank, and stainless-steel tubing assembly that heats the molten salt to high temperatures and circulates it over test specimens. The experiment has been constructed and has completed initial shakedown testing.

To support the flowing FLiBe experiment, a numerical corrosion model that couples FLiBe electrochemistry, solid metal diffusion, and mass transport was implemented. The model …


Comparison Of Intrusive And Non-Intrusive Methods For Corrosion Monitoring Of Fuel Processing Systems, Armando Jacob Espinoza, Thomas Conner Field Jun 2017

Comparison Of Intrusive And Non-Intrusive Methods For Corrosion Monitoring Of Fuel Processing Systems, Armando Jacob Espinoza, Thomas Conner Field

Materials Engineering

This presentation contains an assessment of the best overall corrosion monitoring device, intrusive or non-intrusive, for use in the petrochemical industry. Corrosion in the petrochemical industry is a large issue because it causes a deterioration of pipe integrity in fuel processing systems. A reduction of pipe wall integrity due to corrosion could result in a leak or an explosion of fuel processing lines since those systems function at high pressures. The use of corrosion monitoring systems in the petrochemical industry helps to detect early signs of corrosion prior to failure so that proper maintenance can be performed to prevent catastrophe. …


Nano-Channels Early Formation Investigation On Stainless Steel 316ti After Immersion In Molten Pb-Bi, Abu Khalid Rivai, Mardiyanto Mardiyanto, Annette Heinzel Apr 2017

Nano-Channels Early Formation Investigation On Stainless Steel 316ti After Immersion In Molten Pb-Bi, Abu Khalid Rivai, Mardiyanto Mardiyanto, Annette Heinzel

Makara Journal of Technology

Development of fuel cladding and structural materials in Pb-Bi environment, especially at high temperature, is a critical issue for the deployment of LFR (Lead alloy-cooled Fast Reactor) and ADS (Accelerator Driven Transmutation System). This is because of the corrosive characteristic of Pb-Bi to metals as constituent materials of fuel cladding and structural of the reactors. Corrosion test of a high-chromium austenitic stainless steel i.e. SS316Ti in molten Pb-Bi at 550 ºC has been carried out for about 300 hours continuously. The characterization using SEM-EDS (Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy) showed that an iron oxide as the outer …


The Effects Of Carboxylic Acids In Aluminum Anodizing, Abby E. Koczera Jan 2017

The Effects Of Carboxylic Acids In Aluminum Anodizing, Abby E. Koczera

Honors Theses and Capstones

Hard-anodized alumina coatings were formed in sulfuric acid at low temperature and high current density in the presence of carboxylic acid additives. Citric acid, trimesic acid, mellitic acid and ethylenediaminetetraacetic acid (EDTA) were utilized in varying concentrations. The additives were chosen for their capacity to form complexes with tri-valent aluminum and hence impart chemical stability to the coatings. The coatings were sealed in boiling water, and corrosion resistance was observed in a high pH solution of potassium hydroxide. The coatings were examined using scanning electron microscopy (SEM) to assess coating thickness and pore dimensions. Thicker coatings were produced when the …


Multifunctional Corrosion Inhibition Behavior Of Zn-Al Calcined Layered Double Hydroxides For Steel Rebar In Nacl Solution, Xiao-Juan Zhang, Jing-Jing Wang, Shi-Gang Dong, Chang-Jian Lin Jun 2013

Multifunctional Corrosion Inhibition Behavior Of Zn-Al Calcined Layered Double Hydroxides For Steel Rebar In Nacl Solution, Xiao-Juan Zhang, Jing-Jing Wang, Shi-Gang Dong, Chang-Jian Lin

Journal of Electrochemistry

The Zn-Al layered double hydroxides (Zn-Al LDHs) and calcined products (Zn-Al CLDHs) were synthesized successfully under a routine air atmosphere. The results showed that both Zn-Al LDHs and Zn-Al CLDHs had obvious flake structures. The corrosion inhibition of Zn-Al CLDHs for steel rebar in NaCl solution was studied by electrochemical techniques. It was found that the corrosion rate of steel rebar decreased significantly after the steel rebar was treated by Zn-Al CLDHs in NaCl solution for 3 h. It was indicated that Zn-Al CLDHs could absorb Cl- and release OH- during their reconstruction process, which provided dual protection …


Kelvin Probe Electrode For Contactless Potential Measurement On Concrete-Properties And Applications, Michael Thomas Walsh Jan 2013

Kelvin Probe Electrode For Contactless Potential Measurement On Concrete-Properties And Applications, Michael Thomas Walsh

USF Tampa Graduate Theses and Dissertations

The practical feasibility of using a Kelvin Probe as a novel reference electrode in the measurement of both potential and polarization pulse response of reinforcing steel in concrete is demonstrated. Potential values measured using a KP reflect greater stability and repeatability than can typically be attained with conventional reference electrodes. Duplicate reinforced concrete beam test specimens with well-differentiated centrally corroding rebar segments were analyzed using both the Kelvin Probe (KP) and a conventional Saturated Calomel Electrode (SCE). Potential profile maps were developed using potential values recorded under static conditions with both the SCE and the KP. Nominal polarization resistance was …


Electrochemical Investigation Of Chromium Nanocarbide Coated Ti-6al-4v And Co-Cr-Mo Alloy Substrates, Viswanathan Swaminathan, Haitong Zeng, Daniel Lawrynowicz, Zongtao Zhang, Jeremy L. Gilbert Jan 2011

Electrochemical Investigation Of Chromium Nanocarbide Coated Ti-6al-4v And Co-Cr-Mo Alloy Substrates, Viswanathan Swaminathan, Haitong Zeng, Daniel Lawrynowicz, Zongtao Zhang, Jeremy L. Gilbert

Biomedical and Chemical Engineering - All Scholarship

This study investigated the electrochemical behavior of chromium nano-carbide cermet coating applied on Ti–6Al–4V and Co–Cr–Mo alloys for potential application as wear and corrosion resistant bearing surfaces. The cermet coating consisted of a highly heterogeneous combination of carbides embedded in a metal matrix. The main factors studied were the effect of substrate (Ti–6Al–4V vs. Co–Cr–Mo), solution conditions (physiological vs. 1 M H2O2 of pH 2), time of immersion (1 vs. 24 h) and post coating treatments (passivation and gamma sterilization). The coatings were produced with high velocity oxygen fuel (HVOF) thermal spray technique at atmospheric conditions to …


Oxygen Diffusion Characterization Of Frp Composites Used In Concrete Repair And Rehabilitation, Chandra K. Khoe Jan 2011

Oxygen Diffusion Characterization Of Frp Composites Used In Concrete Repair And Rehabilitation, Chandra K. Khoe

USF Tampa Graduate Theses and Dissertations

Many independent studies have conclusively demonstrated that fiber reinforced polymers (FRP) slow down chloride-induced corrosion of steel in concrete. The mechanism for this slow down is not well understood but it has been hypothesized that FRP serves as a barrier to the ingress of chloride, moisture, and oxygen that sustain electrochemical corrosion of steel.

This dissertation presents results from an experimental study that determined the oxygen permeation rates of materials used in infrastructure repair. In the study, the oxygen permeation constants for epoxy, carbon and glass fiber laminates, concrete, epoxy-concrete and FRP-concrete systems were determined and a method developed to …


Supercritical Water Oxidation Process And Its Application In Treatment Of Industrial Wastewater (Persian Paper), N. Daneshvar, S. Aber, Mir Saeed Seyed Dorraji, M. Zarei, M. H. Rasoulifard Jan 2008

Supercritical Water Oxidation Process And Its Application In Treatment Of Industrial Wastewater (Persian Paper), N. Daneshvar, S. Aber, Mir Saeed Seyed Dorraji, M. Zarei, M. H. Rasoulifard

Mir saeed Seyed Dorraji

In the last two decades, supercritical water has become an interesting medium for chemistry. One of its most investigated applications is the oxidative treatment of aqueous wastes containing organic compound in the so-called “supercritical water oxidation”. In this technology, supercritical water acts as a non-polar solvent. Consequently, even non-polar organic compounds and gases like oxygen become completely miscible with the supercritical fluid. During the supercritical water oxidation (SCWO) process, the organic compounds react completely with oxidant –mostly oxygen- in a single phase reaction forming CO2 and H2O. The hetero-atoms present in the organic wastes are transformed into the mineral acids. …


Synthesis And Application Of Polymeric Corrosion Inhibitor For Reinforced Concrete, Weiwei Lin, Shengxian Wang, Jianqing Zhang Feb 1999

Synthesis And Application Of Polymeric Corrosion Inhibitor For Reinforced Concrete, Weiwei Lin, Shengxian Wang, Jianqing Zhang

Journal of Electrochemistry

A new polymer E Twas synthesized and used as a corrosion inhibitor for reinforced concrete. The inhibitive behavior and mechanism were studied with linear polarization ,Tafel polarization,EIS and XPS method in simulated pore solution system with concrete samples.The result showed that the polymer was a mixing type inhibitor. A 1% dosage was sufficient to imhibit the corrosion of steel in simulated pore solution system. The salt endurance was enhanced from 0.02 mol/L to 0.10 mol/L.The result also showed the good synergetic effect of NaNO 2,especially in low NaNO 2 concentration.The EIS showed that E_T has dual function on reinforced concrete,i.e.,densifying …