Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 866

Full-Text Articles in Chemical Engineering

Nickel-Catalyzed Α-Arylation Of Α-Cyanoacetates Enabled By Electrochemistry, Zi-Meng Li, Zhang-Jian Li, Anat Milo, Ping Fang, Tian-Sheng Mei May 2024

Nickel-Catalyzed Α-Arylation Of Α-Cyanoacetates Enabled By Electrochemistry, Zi-Meng Li, Zhang-Jian Li, Anat Milo, Ping Fang, Tian-Sheng Mei

Journal of Electrochemistry

β-Amino acids have a wide range of applications in the field of pharmaceuticals. Utilizing a combination strategy of nickel catalysis and paired electrolysis, a catalytic α-arylation protocol of carbonyl compounds has been developed. This protocol affords various a-aryl-a-cyanoacetates, which can be reduced to high-value-added α-aryl-β-amino acids. The cross-coupling reaction of electron-deficient aryl bromides with a-cyanoacetates achieves the expected products with good yields and functional group compatibility under mild conditions. Excessive electron-richness in initial aryl bromides facilitates the self-coupling of desired products. DFT calculations confirm that the presence of electron-rich aryl substitutions decreases the …


Recent Advance In Electrochemical Dehalogenative Deuteration, Peng-Fei Li, Guang-Sheng Kou, Li-Ping Qi, You-Ai Qiu May 2024

Recent Advance In Electrochemical Dehalogenative Deuteration, Peng-Fei Li, Guang-Sheng Kou, Li-Ping Qi, You-Ai Qiu

Journal of Electrochemistry

In recent years, the incorporation of deuterium atoms into organic compounds has emerged as a vital focus in the development of pharmaceutical molecules. This trend is driven by the increasing recognition of the significance of compounds containing deuterium atoms across various domains, including materials and biopharmaceuticals, where they have found widespread applications in mechanistic studies within the realms of chemistry and biology. Meanwhile, organic electrochemistry, as a relatively environmentally friendly catalytic mode with broad adaptability to redox reactions, has emerged as a crucial alternative to traditional halogen-deuterium exchange in the context of the reduction deuteration of halides. This approach circumvents …


Comparison Of Ligands In Palladium-Catalyzed Electrochemical Allyl 4-Pyridinylation, Wei-Jie Ding, Chun-Hui Yang, Zhong-Tao Feng, Shi-Rong Lu, Xu Cheng May 2024

Comparison Of Ligands In Palladium-Catalyzed Electrochemical Allyl 4-Pyridinylation, Wei-Jie Ding, Chun-Hui Yang, Zhong-Tao Feng, Shi-Rong Lu, Xu Cheng

Journal of Electrochemistry

4-CN-pyridine is a widely applied 4-pyridinylation reagent for diverse transformations. Conventionally, the reaction proceeds via an open-shell radical cross-coupling pathway. Following our previous study, in this work, we report the Pd-catalyzed allyl 4-pyrinylation reaction under electrochemical conditions. The reaction proceeds via radical-polar crossover pathway in which the role of phosphine ligand in reactivity and selectivity was extensively investigated.


Electrochemical Syntheses Of Aryl-Substituted Benzothiophenes And Phenanthrenes Using Benzenediazonium Salts As The Aryl Radical Precursors, Li-Yuan Lan, Yang-Ye Jiang, Raymond Daniel Little, Cheng-Chu Zeng Apr 2024

Electrochemical Syntheses Of Aryl-Substituted Benzothiophenes And Phenanthrenes Using Benzenediazonium Salts As The Aryl Radical Precursors, Li-Yuan Lan, Yang-Ye Jiang, Raymond Daniel Little, Cheng-Chu Zeng

Journal of Electrochemistry

Aryl-substituted benzothiophene and phenanthrene are important structural units in medicinal chemistry and materials science. Although extensive effort has been devoted to prepare these compounds and a variety of approaches have been developed to construct the 2-substituted benzothiophene core structure, environmental-friendly and efficient synthetic means are still desired. Based on our previous electrochemical Minisci-type arylation reaction with aryl diazonium salt as the aryl precursor, as well as the work from König’s group, herein, we described the use of paired electrolysis to achieve 2-aryl benzothiophenes and 9-aryl phenanthrenes employing benzenediazonium salts as the aryl radical precursors. Initially, 2-methylthiobenzendiazonium salt 1a and 4-methylbenzene …


Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu Apr 2024

Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu

Journal of Electrochemistry

Zero-emission of desulfurization wastewater is one of the main demands for coal-fired power plants. As typical high salinity wastewater, it is hard to purify the desulfurization wastewater from coal-fired power plants through traditional physicochemical treatment or biochemical treatment, e.g., COD and Cl. A high concentration of Cl ion in desulfurization wastewater restricts wastewater reuse and zero-emission. Electrochemical technology is an attractive method for high salinity wastewater zero-emission, which provides a versatile, efficient, cost-effective, easily automatable, and clean industrial process. For advanced treatment of effluent after triple box process treatment in power plants, this paper reports an electrochemical …


Electrocatalytic Cyclopropanation Of Active Methylene Compounds, Liang-Hua Jie, Hai-Chao Xu Apr 2024

Electrocatalytic Cyclopropanation Of Active Methylene Compounds, Liang-Hua Jie, Hai-Chao Xu

Journal of Electrochemistry

The development of novel strategies to access cyclopropanes has become increasingly important due to the vital role of these three-membered ring structures in synthetic intermediates, natural products, and pharmaceuticals. Herein, we present an electrocatalytic method for the synthesis of cyclopropanes through intermolecular dehydrogenative annulation of active methylene compounds and arylalkenes. This electrochemical process requires no chemical oxidants, allowing for a speedy access to various functionalized cyclopropanes from inexpensive and readily available materials.


Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin Mar 2024

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry Jan 2024

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma Jan 2024

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Extrusion-Based Additive Manufacturing Of Magnetic Heat Exchange Structures For Caloric Applications, Vaibhav Sharma Jan 2024

Extrusion-Based Additive Manufacturing Of Magnetic Heat Exchange Structures For Caloric Applications, Vaibhav Sharma

Theses and Dissertations

Currently, the commercial building sector accounts for 18% of total U.S. end-use energy consumption, of which almost a third was from on-site combustion of fossil fuels for space and water heating. Magnetic heat pumping (MHP) technology is an energy-efficient, sustainable, environmentally-friendly alternative to conventional vapor-compression cooling technology. Several MHP designs today are predicted to be highly energy efficient, on condition that suitable working materials can be developed. This materials challenge has proven to be daunting due to issues associated with intricate synthesis/post-processing protocols and complications related to shaping the mostly brittle magnetocaloric alloys into thin-walled channeled regenerator structures to facilitate …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao Dec 2023

An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao

Journal of Electrochemistry

The solid-electrolyte interphase (SEI) plays a key role in anodes for rechargeable lithium-based battery technologies. However, a thorough understanding in the mechanisms of SEI formation and evolution remains a major challenge, hindering the rapid development and wide applications of Li-based batteries. Here, we devise a borrowing surface-enhanced Raman scattering (SERS) activity strategy by utilizing a size optimized Ag nanosubstrate to in-situ monitor the formation and evolution of SEI, as well as its structure and chemistry in an ethylene carbonate-based electrolyte. To ensure a reliable in-situ SERS investigation, we designed a strict air-tight Raman cell with a three-electrode configuration. Based on …


Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr Dec 2023

Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr

Journal of Electrochemistry

Solid oxide electrolysis cell (SOEC) is an efficient and clean energy conversion technology that can utilize electricity obtained from renewable resources, such as solar, wind, and geothermal energy to electrolyze water and produce hydrogen. The conversion of abundant intermittent energy to hydrogen energy would facilitate the efficient utilization of energy resources. SOEC is an all-ceramic electrochemical cell that operates in the intermediate to high temperature range of 500–750 ℃. Compared with traditional low temperature electrolysis technology (e.g., alkaline or proton exchange membrane cells operating at ~100 ℃), the high-temperature SOEC can increase the electrolysis efficiency from 80% to ~100%, providing …


Robust Gasification Trial Results For A Variety Of Difficult-To-Recycle Packaging-Related Materials, Bruce A. Welt Dec 2023

Robust Gasification Trial Results For A Variety Of Difficult-To-Recycle Packaging-Related Materials, Bruce A. Welt

Journal of Applied Packaging Research

Currently, recycling requires nearly absolute sorting of materials to accommodate the limited capabilities of existing recycling infrastructure. Whether a material is “recyclable” depends more on the method of recycling than the material itself. Our dependence upon sorting has limited success of recycling and has stifled our ability to achieve circular economy sustainability with plastic packaging materials. Our dependence upon sorting is rooted in our material-specific recycling processes. However, newer robust recycling processes are commercially available that reduce or eliminate the need to sort waste, and can convert mixed waste into primary feedstock chemicals, such as methanol for subsequent manufacture of …


Constructing Carbon-Encapsulated Nifev-Based Electrocatalysts By Alkoxide-Based Self-Template Method For Oxygen Evolution Reaction, En-Hui Ma, Xu-Po Liu, Tao Shen, De-Li Wang Nov 2023

Constructing Carbon-Encapsulated Nifev-Based Electrocatalysts By Alkoxide-Based Self-Template Method For Oxygen Evolution Reaction, En-Hui Ma, Xu-Po Liu, Tao Shen, De-Li Wang

Journal of Electrochemistry

The development of green and sustainable water-splitting hydrogen production technology is beneficial to reducing the over-reliance on fossil fuels and realizing the strategic goal of "carbon neutral". As one of the half reactions for water splitting, oxygen evolution reaction has suffered the problems of sluggish four-electron transfer process and relatively slow reaction kinetics. Therefore, exploring efficient and stable catalysts for oxygen evolution reaction is of critical importance for water-splitting technology. Metal alkoxides are a series of compounds formed by the coordination function of metal ions with alcohol molecules. Metal alkoxides possess the double advantages of organic materials and inorganic materials, …


Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang Oct 2023

Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang

Journal of Electrochemistry

With the rapid development of electric vehicles, enormous demands are made for higher energy density, better cycling performance and lower cost of lithium-ion batteries (LIBs). As an important high capacity cathode material for LIBs, the high nickel layered oxide material LiNi0.8Co0.1Mn0.1O2(NCM811) can reach an energy density of 760 Wh·kg-1. The ultra-high nickel ternary positive electrode material (LiNi1-x-yCoxMnyO2, x ≥ 0.90) has a specific capacity of more than 210 mAh·g-1, and can realize higher energy density. Besides, an ultra-high nickel material …


Preparation And Electrocatalytic Performance Of Feni-Cop/Nc Bifunctional Catalyst, Si-Miao Liu, Jing-Jiao Zhou, Shi-Jun Ji, Zhong-Sheng Wen Oct 2023

Preparation And Electrocatalytic Performance Of Feni-Cop/Nc Bifunctional Catalyst, Si-Miao Liu, Jing-Jiao Zhou, Shi-Jun Ji, Zhong-Sheng Wen

Journal of Electrochemistry

Rechargeable zinc-air batteries have gradually attracted much attention worldwide due to their high capacity, high energy density and low price. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) correspond to the charging and discharging processes in rechargeable zinc-air battery, respectively. At present, commercial Pt/C and IrO2 catalysts hinder the large-scale application of zinc-air batteries due to low reserves, high prices and poor stability. Therefore, exploring high performance, low cost and high stability with dual functional catalysts is important for the development of rechargeable zinc-Air batteries. The metal-organic frameworks (MOFs) have high specific surface area, structural stability, good catalytic …


Hydrophobicity Optimization Of Cathode Catalyst Layer For Proton Exchange Membrane Fuel Cell, Hao-Jie Chen, Mei-Hua Tang, Sheng-Li Chen Sep 2023

Hydrophobicity Optimization Of Cathode Catalyst Layer For Proton Exchange Membrane Fuel Cell, Hao-Jie Chen, Mei-Hua Tang, Sheng-Li Chen

Journal of Electrochemistry

Hydrophobicity of the cathode catalyst layers (CCLs) crucially determines the performance of proton exchange membrane fuel cells (PEMFCs) by affecting the transports of oxygen and liquid water. In this regard, polytetrafluoroethylene (PTFE) is usually used as a hydrophobic additive to facilitate the oxygen and water transports in CCLs. So far, there remains lacking systematic effort to optimize the addition methods of PTFE in CCLs and the mechanisms behind. In this work, the effects of the approaches for PTFE addition and the distribution of PTFE on the mass transport of oxygen and the proton conduction in CCLs were studied by using …


Investigating The Rheological Behavior Of A Simple Yield Stress Fluid Under Shear Flows, Francesco Accetta Aug 2023

Investigating The Rheological Behavior Of A Simple Yield Stress Fluid Under Shear Flows, Francesco Accetta

Theses

Many soft materials display unique and complex rheological behavior characterized by a transition from a solid-like to a fluid-like state upon the application of a force that exceeds the threshold to flow, known as the yield stress. Yield stress fluids are found in a wide range of commonly encountered materials including microgels, emulsions, and foams, and have been widely studied by rheologists over the last several decades. Carbopol is a popular polymeric microgel system as it displays simple, non-thixotropic rheological behavior and is typically seen as an ideal yield stress fluid. Previous research has demonstrated the reproducible behavior of shear …


Synthesis And Evaluation Of Organic Additives For Copper Electroplating Of Interconnects, Yue-Hui Zhai, Yi-Xiao Peng, Yan Hong, Yuan-Ming Chen, Guo-Yun Zhou, Wei He, Peng-Ju Wang, Xian-Ming Chen, Chong Wang Aug 2023

Synthesis And Evaluation Of Organic Additives For Copper Electroplating Of Interconnects, Yue-Hui Zhai, Yi-Xiao Peng, Yan Hong, Yuan-Ming Chen, Guo-Yun Zhou, Wei He, Peng-Ju Wang, Xian-Ming Chen, Chong Wang

Journal of Electrochemistry

Copper interconnects are essential to the functionality, performance, power efficiency, reliability, and fabrication yield of electronic devices. They are widely found in chips, packaging substrates and printed circuit boards, and are often produced by copper electroplating in an acidic aqueous solution. Organic additives play a decisive role in regulating copper deposition to fill microgrooves, and micro-vias to form fine lines and interlayer interconnects. Generally, an additive package consists of three components (brightener, suppressor, and leveler), which have a synergistic effect of super-filling on electroplating copper when the concentration ratio is appropriate. Many works of literature have discussed the mechanism of …


Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady Aug 2023

Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady

All Theses

Polylactic acid (PLA) is a biopolymer made from renewable resources such as sugar and corn. PLA filament is a popular material used in Fused Deposition Modeling (FDM) 3D-printing. While this material has many advantages, all the failed parts, support structures, rafts, nozzle tests, and the many prototype iterations during the 3D-printing process contribute to the plastic pollution and release of greenhouse gases. Although PLA is biodegradable, it can take years to degrade in landfills. Instead of throwing away PLA waste and buying new filaments, PLA can be recycled. Amongst the different recycling technologies, mechanical recycling is the most environmentally friendly. …


Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp Aug 2023

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp

All Dissertations

An ongoing challenge in advanced materials design is the development of accurate multiscale models that consider uncertainty while establishing a link between knowledge or information about constituent materials to overall composite properties. Successful models can accurately predict composite properties, reducing the high financial and labor costs associated with experimental determination and accelerating material innovation. Whereas early pioneers in micromechanics developed simplistic theoretical models to map these relationships, modern advances in computer technology have enabled detailed simulators capable of accurately predicting complex and multiscale phenomena.

This work advances domain knowledge via two means: firstly, through the development of high-fidelity, physics-based finite …


Recent Progress Of Bifunctional Electrocatalysts For Oxygen Electrodes In Unitized Regenerative Fuel Cells, Tian-Long Zheng, Ming-Yu Ou, Song Xu, Xin-Biao Mao, Shi-Yi Wang, Qing-Gang He Jul 2023

Recent Progress Of Bifunctional Electrocatalysts For Oxygen Electrodes In Unitized Regenerative Fuel Cells, Tian-Long Zheng, Ming-Yu Ou, Song Xu, Xin-Biao Mao, Shi-Yi Wang, Qing-Gang He

Journal of Electrochemistry

Unitized regenerative fuel cells (URFCs), which oxidize hydrogen to water to generate electrical power under thefuel cells (FCs) mode and electrolyze water to hydrogen under the water electrolysis (WE) mode for recycling, areknown as clean and sustainable energy conversion devices. In contrast to the hydrogen oxidation reaction (HOR) andhydrogen evolution reaction (HER) on the hydrogen electrode side, the sluggish kinetics of oxygen reduction reaction(ORR) and oxygen evolution reaction (OER) on the oxygen electrode side requires highly efficient bifunctional oxygencatalysts. Conventional precious metal oxygen catalysts combine Pt and IrO2 with excellent ORR and OER activities toachieve bifunctional electrocatalysis performance, but …


Band Alignments Of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics, Yong-Bin Zhuang, Jun Cheng Jul 2023

Band Alignments Of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics, Yong-Bin Zhuang, Jun Cheng

Journal of Electrochemistry

Band alignments of electrode-water interfaces are of crucial importance for understanding electrochemical interfaces. In the scenario of electrocatalysis, applied potentials are equivalent to the Fermi levels of metals in the electrochemical cells; in the scenario of photo(electro)catalysis, semiconducting oxides under illumination have chemical reactivities toward redox reactions if the redox potentials of the reactions straddle the conduction band minimums (CBMs) or valence band maximums (VBMs) of the oxides. Computational band alignments allow us to obtain the Fermi level of metals, as well as the CBM and VBM of semiconducting oxides with respect to reference electrodes. In this tutorial, we describe …


The Plastics Collection Reference Packet, Special Collections Research Center Jul 2023

The Plastics Collection Reference Packet, Special Collections Research Center

Special Collections Research Center

This reference packet is an informational tool to support further research into the history of plastics—whether interested in companies, individuals within the plastics industry's history, historical plastics materials, essays, and more. All content featured within this packet was previously published on the former plastics.syr.edu website as part of a Syracuse University Libraries and Special Collections Research Center (SCRC) partnership established in 2007 with the Plastics Pioneers Association (PPA)—an association of plastics industry professionals interested in preserving the plastics industry's past.


P-Doped Ru-Pt Alloy Catalyst Toward High Performance Alkaline Hydrogen Evolution Reaction, Rong-Qin Huang, Wei-Ping Liao, Meng-Xuan Yan, Shi Liu, Yuan-Ming Li, Xiong-Wu Kang May 2023

P-Doped Ru-Pt Alloy Catalyst Toward High Performance Alkaline Hydrogen Evolution Reaction, Rong-Qin Huang, Wei-Ping Liao, Meng-Xuan Yan, Shi Liu, Yuan-Ming Li, Xiong-Wu Kang

Journal of Electrochemistry

Electrocatalytic water splitting represents grand promise for hydrogen fuel in modern energy equipment, and the design and fabrication of higher performance catalysts are at the central. Herein, we report the sequential phosphorus (P)-doping into ruthenium (Ru) nanoparticles (Ru-P/C) by thermal annealing of Ru nanoparticles in phosphine (PH3) atmosphere and deposition of extremely low concentration of platinum (Pt) to obtain P-doped Ru-Pt alloy catalyst supported on carbon nanotubes (CNTs), which is denoted as (Ru-P)#Pt/C. The data by X-ray diffraction spectroscopy and transmission electron microscopy show that the Ru nanoparticles existed in the form of hexagonal close-packed (hcp) phase with …


Deep Euteceic Solvents-Assisted Synthesis Of Novel Network Nanostructures For Accelerating Formic Acid Electrooxidation, Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fan, You-Jun Fan, Jian-Feng Jia May 2023

Deep Euteceic Solvents-Assisted Synthesis Of Novel Network Nanostructures For Accelerating Formic Acid Electrooxidation, Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fan, You-Jun Fan, Jian-Feng Jia

Journal of Electrochemistry

Deep eutectic solvents (DESs) have been reported as a type of solvent for the controllable synthesis of metal nanostructures. Interestingly, flower-like palladium (Pd) nanoparticles composed of staggered nanosheets and nanospheres are spontaneously transformed into three-dimensional (3D) network nanostructures in choline chloride-urea DESs using ascorbic acid as a reducing agent. Systematic studies have been carried out to explore the formation mechanism, in which DESs itself acts as a solvent and soft template for the formation of 3D flower-like network nanostructures (FNNs). The amounts of hexadecyl trimethyl ammonium bromide and sodium hydroxide also play a crucial role in the anisotropic growth and …


Fe Nanoparticles Encapsulated In N-Doped Porous Carbon For Efficient Oxygen Reduction In Alkaline Media, Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang May 2023

Fe Nanoparticles Encapsulated In N-Doped Porous Carbon For Efficient Oxygen Reduction In Alkaline Media, Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang

Journal of Electrochemistry

Rational design and synthesis of non-precious-metal catalyst plays an important role in improving the activity and stability for oxygen reduction reaction (ORR) but remains a major challenge. In this work, we used a facile approach to synthesize iron nanoparticles encapsulated in nitrogen-doped porous carbon materials (Fe@N-C) from functionalized metal-organic frameworks (MOFs, MET-6). Embedding Fe nanoparticles into the carbon skeleton increases the graphitization degree and the proportion of graphitic N as well as promotes the formation of mesopores in the catalyst. The Fe@N-C-30 catalyst showed the excellent ORR activity in alkaline solutions (E0 = 0.97 V vs. RHE, E1/2 …


The Influence Of Heat And Mass Transfer On The Setting Rate Of Adhesives Between Porous Substrates, Mubarak Mohammed Khlewee May 2023

The Influence Of Heat And Mass Transfer On The Setting Rate Of Adhesives Between Porous Substrates, Mubarak Mohammed Khlewee

Electronic Theses and Dissertations

The dynamic penetration of fluid into a porous media where other changes are occurring such as temperature or concentration is of interest to a number of situations. However, little experimental and theoretical analysis of this situation is found in the literature where most of the previously published works have studied the penetration with constant physical properties, where there is no change of the fluid as it enters the pores. This situation is important in the setting of adhesives in porous medium such as in the setting of hot melt and water-based adhesives in the production of paper based packaging. The …


Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo May 2023

Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo

Publications and Research

The goal of the current study is to investigate cutting-edge techniques for recycling filament waste from 3D printing procedures. Appropriate waste management techniques are required to reduce this trash's harmful environmental consequences. The goal of the project is to look at new methods for recycling filament waste in order to minimize disposal and encourage reuse. To acquire data from pertinent papers and research, a thorough literature review methodology was used. The findings show that this issue may be resolved utilizing a variety of recycling techniques, including shredding, melting, and re-extrusion. The type of filament waste and the intended goal will …