Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Chemical Engineering

Capture And Recycle Of Industrial Co2 Emissions Using Mircoalgae, Michael H. Wilson, Daniel T. Mohler, John G. Groppo, Thomas E. Grubbs, Stephanie Kesner, E. Molly Frazar, Aubrey Shea, Czarena L. Crofcheck, Mark Crocker Sep 2016

Capture And Recycle Of Industrial Co2 Emissions Using Mircoalgae, Michael H. Wilson, Daniel T. Mohler, John G. Groppo, Thomas E. Grubbs, Stephanie Kesner, E. Molly Frazar, Aubrey Shea, Czarena L. Crofcheck, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

A novel cyclic flow photobioreactor (PBR) for the capture and recycle of CO2 using microalgae was designed and deployed at a coal-fired power plant (Duke Energy’s East Bend Station). The PBR was operated continuously during the period May–September 2015, during which algae productivity of typically 0.1–0.2 g/(L day) was obtained. Maximum CO2 capture efficiency was achieved during peak sunlight hours, the largest recorded CO2 emission reduction corresponding to a value of 81 % (using a sparge time of 5 s/min). On average, CO2 capture efficiency during daylight hours was 44 %. The PBR at East Bend …


Design Of Highly Stable Low-Density Self-Assembled Monolayers Using Thiol-Yne Click Reaction For The Study Of Protein-Surface Interactions, Leila Safazadeh Haghighi Jan 2016

Design Of Highly Stable Low-Density Self-Assembled Monolayers Using Thiol-Yne Click Reaction For The Study Of Protein-Surface Interactions, Leila Safazadeh Haghighi

Theses and Dissertations--Chemical and Materials Engineering

Protein adsorption on solid surfaces is a common yet complicated phenomenon that is not fully understood. Self-assembled monolayers have been utilized in many studies, as well-defined model systems for studying protein-surface interactions in the atomic level. Various strategies, including the use of single component SAMs[1, 2], combinations of long and short alkanethiolates with methyl- and hydroxyl- terminal groups[3, 4], and using mixtures of alkanethiolates with similar chain length and varying terminal functional group [5] have been used to effectively control the surface wettability and determine the effect of surface composition and wettability on protein adsorption. In this dissertation we report …