Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Chemical Engineering

Molecular Understanding And Design Of Deep Eutectic Solvents And Proteins Using Computer Simulations And Machine Learning, Usman Lame Abbas Jan 2024

Molecular Understanding And Design Of Deep Eutectic Solvents And Proteins Using Computer Simulations And Machine Learning, Usman Lame Abbas

Theses and Dissertations--Chemical and Materials Engineering

Hydrophobic deep eutectic solvents (DESs) have emerged as excellent extractants. A major challenge is the lack of an efficient tool to discover DES candidates. Currently, the search relies heavily on the researchers’ intuition or a trial-and-error process, which leads to a low success rate or bypassing of promising candidates. DES performance depends on the heterogeneous hydrogen bond environment formed by multiple hydrogen bond donors and acceptors. Understanding this heterogeneous hydrogen bond environment can help develop principles for designing high performance DESs for extraction and other separation applications. This work investigates the structure and dynamics of hydrogen bonds in hydrophobic DESs …


Molecular Understanding Of Zwitterions And Quantum Computing For Sustainability, Manh Tien Nguyen Jan 2023

Molecular Understanding Of Zwitterions And Quantum Computing For Sustainability, Manh Tien Nguyen

Theses and Dissertations--Chemical and Materials Engineering

The sustainable development of society needs sustainable energy solutions and the mitigation of greenhouse gas emissions. One key subject in this area is the development of safe and efficient ion-based batteries. Moreover, CO2 capture is a crucial pathway in mitigating emissions from the combustion of fossil fuels. Ongoing efforts are to improve both technologies' safety and efficiency. This thesis presents our efforts to conduct computational research on understanding advanced zwitterionic electrolytes and CO2 capture. Chapters 2-4 illustrate the computational research to understand ionic solvation in zwitterionic electrolytes. Solid-state electrolytes are essential for safer batteries. While solid polymer electrolytes …


Photocatalytic Degradation Of Lignin By Supported Silver Nanoparticles, Ning Wei Jan 2022

Photocatalytic Degradation Of Lignin By Supported Silver Nanoparticles, Ning Wei

Theses and Dissertations--Chemical and Materials Engineering

Lignin is the second most abundant form of biomass on earth. The phenolic structure and high carbon to oxygen ratio make lignin an attractive renewable source of fuel and chemicals. However, its recalcitrance and heterogeneous nature prove difficult for decomposing lignin’s polymer structure and separation of the products. This work has focused on the use of low-energy catalytic approaches to overcome these barriers. A mimic of the lignin degrading enzyme laccase, consisting of a copper cluster Cu4Py4I4 modified with AgNO3, was developed to function similarly to the laccase active site. The prepared copper complex solution was found to be active …


Hydrocracking Of Octacosane And Cobalt Fischer–Tropsch Wax Over Nonsulfided Nimo And Pt-Based Catalysts, Wenping Ma, Jungshik Kang, Gary Jacobs, Shelley D. Hopps, Burtron H. Davis Sep 2021

Hydrocracking Of Octacosane And Cobalt Fischer–Tropsch Wax Over Nonsulfided Nimo And Pt-Based Catalysts, Wenping Ma, Jungshik Kang, Gary Jacobs, Shelley D. Hopps, Burtron H. Davis

Center for Applied Energy Research Faculty and Staff Publications

The effect of activation environment (N2, H2 and H2S/H2) on the hydrocracking performance of a NiMo/Al catalyst was studied at 380 °C and 3.5 MPa using octacosane (C28). The catalyst physical structure and acidity were characterized by BET, XRD, SEM-EDX and FTIR techniques. The N2 activation generated more active nonsulfided NiMo/Al catalyst relative to the H2 or H2S activation (XC28, 70–80% versus 6–10%). For a comparison, a NiMo/Si-Al catalyst was also tested after normal H2 activation and showed higher activity at the same process …


Review On Carbon Dioxide Utilization For Cycloaddition Of Epoxides By Ionic Liquid-Modified Hybrid Catalysts: Effect Of Influential Parameters And Mechanisms Insight, Jimmy Nelson Appaturi, Rajabathar. Jothi Ramalingam, Muthu Kumaran Gnanamani, Govindasami Periyasami, Prabhakarn Arunachalam, Rohana Adnan, Farook Adam, Mohammed D. Wasmiah, Hamad A. Al‐Lohedan Jan 2021

Review On Carbon Dioxide Utilization For Cycloaddition Of Epoxides By Ionic Liquid-Modified Hybrid Catalysts: Effect Of Influential Parameters And Mechanisms Insight, Jimmy Nelson Appaturi, Rajabathar. Jothi Ramalingam, Muthu Kumaran Gnanamani, Govindasami Periyasami, Prabhakarn Arunachalam, Rohana Adnan, Farook Adam, Mohammed D. Wasmiah, Hamad A. Al‐Lohedan

Center for Applied Energy Research Faculty and Staff Publications

The storage, utilization, and control of the greenhouse (CO2) gas is a topic of interest for researchers in academia and society. The present review article is dedicating to cover the overall role of ionic liquid-modified hybrid materials in cycloaddition reactions. Special emphasis is on the synthesis of various cyclic carbonate using ionic liquid-based modified catalysts. Catalytic activity studies have discussed with respect to process conditions and their effects on conversion and product selectivity for the reaction of cycloaddition of CO2 with styrene oxide. The reaction temperature and the partial pressure of CO2 have found to play …


Nanoceria Distribution And Effects Are Mouse-Strain Dependent, Robert A. Yokel, Michael T. Tseng, D. Allan Butterfield, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Arnold J. Stromberg, Alan K. Dozier, Uschi M. Graham Aug 2020

Nanoceria Distribution And Effects Are Mouse-Strain Dependent, Robert A. Yokel, Michael T. Tseng, D. Allan Butterfield, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Arnold J. Stromberg, Alan K. Dozier, Uschi M. Graham

Pharmaceutical Sciences Faculty Publications

Prior studies showed nanoparticle clearance was different in C57BL/6 versus BALB/c mice, strains prone to Th1 and Th2 immune responses, respectively. Objective: Assess nanoceria (cerium oxide, CeO2 nanoparticle) uptake time course and organ distribution, cellular and oxidative stress, and bioprocessing as a function of mouse strain. Methods: C57BL/6 and BALB/c female mice were i.p. injected with 10 mg/kg nanoceria or vehicle and terminated 0.5 to 24 h later. Organs were collected for cerium analysis; light and electron microscopy with elemental mapping; and protein carbonyl, IL-1β, and caspase-1 determination. Results: Peripheral organ cerium significantly increased, generally more …


Plasma And Serum Proteins Bound To Nanoceria: Insights Into Pathways By Which Nanoceria May Exert Its Beneficial And Deleterious Effects In Vivo, D. Allan Butterfield, Binghui Wang, Peng Wu, Sarita S. Hardas, Jason M. Unrine, Eric A. Grulke, Jian Cai, Jon B. Klein, William M. Pierce, Robert A. Yokel, Rukhsana Sultana Jul 2020

Plasma And Serum Proteins Bound To Nanoceria: Insights Into Pathways By Which Nanoceria May Exert Its Beneficial And Deleterious Effects In Vivo, D. Allan Butterfield, Binghui Wang, Peng Wu, Sarita S. Hardas, Jason M. Unrine, Eric A. Grulke, Jian Cai, Jon B. Klein, William M. Pierce, Robert A. Yokel, Rukhsana Sultana

Chemistry Faculty Publications

Nanoceria (CeO2, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. In blood, nanoceria becomes protein-coated, changing its surface properties to yield a different presentation to cells. There is little information on the interaction of nanoceria with blood proteins. The current study is the first to report the proteomics identification of plasma and serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum proteins interacting with nanoceria, proteins whose normal activities regulate numerous cell functions: antioxidant/detoxification, energy regulation, lipoproteins, signaling, complement, immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein folding, protease inhibition, adhesion, protein/RNA …


Low Temperature Liquid Metal Batteries For Energy Storage Applications, Cameron A. Lippert, Kunlei Liu, James Landon, Susan A. Odom, Nicolas E. Holubowitch Dec 2019

Low Temperature Liquid Metal Batteries For Energy Storage Applications, Cameron A. Lippert, Kunlei Liu, James Landon, Susan A. Odom, Nicolas E. Holubowitch

Center for Applied Energy Research Faculty Patents

The present invention relates to a molten metal battery of liquid bismuth and liquid tin electrodes and a eutectic electrolyte. The electrodes may be coaxial and coplanar. The eutectic electrolyte may be in contact with a surface of each electrode. The eutectic electrolyte may comprise ZnC12:KCI.


Zirconia-Based Compositions For Use In Passive NoX Adsorber Devices, Deborah Jayne Harris, David Alastair Scapens, John G. Darab, Mark Crocker, Yaying Ji Dec 2019

Zirconia-Based Compositions For Use In Passive NoX Adsorber Devices, Deborah Jayne Harris, David Alastair Scapens, John G. Darab, Mark Crocker, Yaying Ji

Chemistry Faculty Patents

A passive NOx adsorbent includes: palladium, platinum or a mixture thereof and a mixed or composite oxide including the following elements in percentage by weight, expressed in terms of oxide: 10-90% by weight zirconium and 0.1-50% by weight of least one of the following: a transition metal or a lanthanide series element other than Ce.

Although the passive NOx adsorbent can include Ce in an amount ranging from 0.1 to 20% by weight expressed in terms of oxide, advantages are obtained particularly in the case of low-Ce or a substantially Ce-free passive NOx adsorbent.


Computationally Aided Design Of A High-Performance Organic Semiconductor: The Development Of A Universal Crystal Engineering Core, Anthony J. Petty Ii, Qianxiang Ai, Jeni C. Sorli, Hamna F. Haneef, Geoffrey E. Purdum, Alex M. Boehm, Devin B. Granger, Kaichen Gu, Carla Patricia Lacerda Rubinger, Sean R. Parkin, Kenneth R. Graham, Oana D. Jurchescu, Yueh-Lin Loo, Chad Risko, John E. Anthony Oct 2019

Computationally Aided Design Of A High-Performance Organic Semiconductor: The Development Of A Universal Crystal Engineering Core, Anthony J. Petty Ii, Qianxiang Ai, Jeni C. Sorli, Hamna F. Haneef, Geoffrey E. Purdum, Alex M. Boehm, Devin B. Granger, Kaichen Gu, Carla Patricia Lacerda Rubinger, Sean R. Parkin, Kenneth R. Graham, Oana D. Jurchescu, Yueh-Lin Loo, Chad Risko, John E. Anthony

Chemistry Faculty Publications

Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene “universal crystal engineering core”. After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 V−1 s−1.


Photocatalytic Degradation Of Profenofos And Triazophos Residues In The Chinese Cabbage, Brassica Chinensis, Using Ce-Doped Tio2, Xiangying Liu, You Zhan, Zhongqin Zhang, Lang Pan, Lifeng Hui, Kailin Liu, Xuguo Zhou, Lianyang Bai Mar 2019

Photocatalytic Degradation Of Profenofos And Triazophos Residues In The Chinese Cabbage, Brassica Chinensis, Using Ce-Doped Tio2, Xiangying Liu, You Zhan, Zhongqin Zhang, Lang Pan, Lifeng Hui, Kailin Liu, Xuguo Zhou, Lianyang Bai

Entomology Faculty Publications

Pesticides have revolutionized the modern day of agriculture and substantially reduced crop losses. Synthetic pesticides pose a potential risk to the ecosystem and to the non-target organisms due to their persistency and bioaccumulation in the environment. In recent years, a light-mediated advanced oxidation processes (AOPs) has been adopted to resolve pesticide residue issues in the field. Among the current available semiconductors, titanium dioxide (TiO2) is one of the most promising photocatalysts. In this study, we investigated the photocatalytic degradation of profenofos and triazophos residues in Chinese cabbage, Brassica chinensis, using a Cerium-doped nano semiconductor TiO2 (TiO …


Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman Oct 2018

Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman

Chemistry Faculty Publications

Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic …


The Role Of Catalytic Residue PKA On The Hydrolysis/Transglycosylation Partition In Family 3 Β-Glucosidases, Inacrist Geronimo, Christina M. Payne, Mats Sandgren Dec 2017

The Role Of Catalytic Residue PKA On The Hydrolysis/Transglycosylation Partition In Family 3 Β-Glucosidases, Inacrist Geronimo, Christina M. Payne, Mats Sandgren

Chemical and Materials Engineering Faculty Publications

β-Glucosidases (βgls) primarily catalyze the hydrolysis of the terminal glycosidic bond at the non-reducing end of β-glucosides, although glycosidic bond synthesis (called transglycosylation) can also occur in the presence of another acceptor. In the final reaction step, the glucose product or another substrate competes with water for transfer to the glycosyl-enzyme intermediate. The factors governing the balance between the two pathways are not fully known; however, the involvement of ionizable residues in binding and catalysis suggests that their pKa may play a role. Through constant pH molecular dynamics simulations of a glycoside hydrolase Family 3 (GH3) βgl, we …


Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya Dec 2017

Layer-By-Layer Assembled Membranes With Immobilized Porins, Sebastián Hernández, Cassandra Porter, Xinyi Zhang, Yinan Wei, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

New and advanced opportunities are arising for the synthesis and functionalization of membranes with selective separation, reactivity, and stimuli-responsive behavior. One such advancement is the integration of bio-based channels in membrane technologies. By a layer-by-layer (LbL) assembly of polyelectrolytes, outer membrane protein F trimers (OmpF) or “porins” from Escherichia coli with central pores ∼2 nm in diameter at their opening and ∼0.7 × 1.1 nm at their constricted region are immobilized within the pores of poly(vinylidene fluoride) microfiltration membranes, in contrast to traditional ruptured lipid bilayer or vesicle processes. These OmpF-membranes demonstrate selective rejection of non-charged organics over ionic solutes, …


Synthesis And Characterization Of Thermoresponsive Hydrogels Based On N-Isopropylacrylamide Crosslinked With 4,4′-Dihydroxybiphenyl Diacrylate, Shuo Tang, Martha Floy, Rohit Bhandari, Manjula Sunkara, Andrew J. Morris, Thomas D. Dziubla, J. Zach Hilt Dec 2017

Synthesis And Characterization Of Thermoresponsive Hydrogels Based On N-Isopropylacrylamide Crosslinked With 4,4′-Dihydroxybiphenyl Diacrylate, Shuo Tang, Martha Floy, Rohit Bhandari, Manjula Sunkara, Andrew J. Morris, Thomas D. Dziubla, J. Zach Hilt

Chemical and Materials Engineering Faculty Publications

A novel crosslinker [4,4′-dihydroxybiphenyl diacrylate (44BDA)] was developed, and a series of temperature-responsive hydrogels were synthesized through free radical polymerization of N-isopropylacrylamide (NIPAAm) with 44BDA. The temperature-responsive behavior of the resulting gels was characterized by swelling studies, and the lower critical solution temperature (LCST) of the hydrogels was characterized through differential scanning calorimetry. Increased content of 44BDA led to a decreased swelling ratio and shifted the LCST to lower temperatures. These novel hydrogels also displayed resiliency through multiple swelling–deswelling cycles, and their temperature responsiveness was reversible. The successful synthesis of NIPAAm-based hydrogels crosslinked with 44BDA has led to a …


Synthesis And Catalytic Applications Of Non-Metal Doped Mesoporous Titania, Syed Z. Islam, Suraj R. Nagpure, Doo Young Kim, Stephen E. Rankin Mar 2017

Synthesis And Catalytic Applications Of Non-Metal Doped Mesoporous Titania, Syed Z. Islam, Suraj R. Nagpure, Doo Young Kim, Stephen E. Rankin

Chemical and Materials Engineering Faculty Publications

Mesoporous titania (mp-TiO2) has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to …


Biomimetic Devices To Drive A Thermodynamically Uphill Reaction Using Light And To Degrade Industrial Waste Stream Components, Madison Joanne Sloan Jan 2017

Biomimetic Devices To Drive A Thermodynamically Uphill Reaction Using Light And To Degrade Industrial Waste Stream Components, Madison Joanne Sloan

Theses and Dissertations--Chemistry

Given the amount of industrial waste produced each year, as well as the accruing amount of greenhouse gases in our atmosphere produced by the burning of fossil fuels, it is imperative that humanity develop environmentally-sustainable sources of energy and methods of remediation. Nature achieves both of these by use of enzymes as catalysts, inspiring interest in designing biomimetic systems capable of harnessing clean energy and remediating industrial waste. This study examined the ability of enzymes in electrochemical and convective flow systems to achieve these tasks. The first portion studied the incorporation of enzymes into an electrochemical system to drive the …


Grain Boundary Induced Bias Instability In Soluble Acene-Based Thin-Film Transistors, Ky V. Nguyen, Marcia M. Payne, John E. Anthony, Jung Hun Lee, Eunjoo Song, Boseok Kang, Kilwon Cho, Wi Hyoung Lee Sep 2016

Grain Boundary Induced Bias Instability In Soluble Acene-Based Thin-Film Transistors, Ky V. Nguyen, Marcia M. Payne, John E. Anthony, Jung Hun Lee, Eunjoo Song, Boseok Kang, Kilwon Cho, Wi Hyoung Lee

Chemistry Faculty Publications

Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant …


Capture And Recycle Of Industrial Co2 Emissions Using Mircoalgae, Michael H. Wilson, Daniel T. Mohler, John G. Groppo, Thomas E. Grubbs, Stephanie Kesner, E. Molly Frazar, Aubrey Shea, Czarena L. Crofcheck, Mark Crocker Sep 2016

Capture And Recycle Of Industrial Co2 Emissions Using Mircoalgae, Michael H. Wilson, Daniel T. Mohler, John G. Groppo, Thomas E. Grubbs, Stephanie Kesner, E. Molly Frazar, Aubrey Shea, Czarena L. Crofcheck, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

A novel cyclic flow photobioreactor (PBR) for the capture and recycle of CO2 using microalgae was designed and deployed at a coal-fired power plant (Duke Energy’s East Bend Station). The PBR was operated continuously during the period May–September 2015, during which algae productivity of typically 0.1–0.2 g/(L day) was obtained. Maximum CO2 capture efficiency was achieved during peak sunlight hours, the largest recorded CO2 emission reduction corresponding to a value of 81 % (using a sparge time of 5 s/min). On average, CO2 capture efficiency during daylight hours was 44 %. The PBR at East Bend …


Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin Jan 2016

Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin

Mechanical Engineering Faculty Publications

Two-way coupling is performed between a spallation code and a hypersonic aerothermodynamics CFD solver to evaluate the effect of spalled particles on the flow field. Time accurate solutions are computed in argon and air flow fields. A single particle simulations and multiple particles simulations are performed and studied. The results show that the carbon vapor released by spalled particles tend to change the composition of the flow field, particularly the upstream region of the shock.


Secondary Organic Aerosol Formation From The Β-Pinene+No3 System: Effect Of Humidity And Peroxy Radical Fate, C. M. Boyd, J. Sanchez, L. Xu, Alexis J. Eugene, T. Nah, W. Y. Tuet, Marcelo I. Guzman, N. L. Ng Jul 2015

Secondary Organic Aerosol Formation From The Β-Pinene+No3 System: Effect Of Humidity And Peroxy Radical Fate, C. M. Boyd, J. Sanchez, L. Xu, Alexis J. Eugene, T. Nah, W. Y. Tuet, Marcelo I. Guzman, N. L. Ng

Chemistry Faculty Publications

The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber (GTEC) facility. Aerosol yields are determined for experiments performed under both dry (relative humidity (RH) < 2 %) and humid (RH = 50 % and RH = 70 %) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231, and 245 amu, which likely correspond to molecular formulas of C10H17NO4, C10H15NO5, C10H17NO …


Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke Jan 2015

Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke

Theses and Dissertations--Chemical and Materials Engineering

Cancer is designated as the leading cause of mortality worldwide and lung cancer is responsible for nearly 30% of all cancer related deaths. Over the last few decades mortality rates have only marginally increased and rates of recurrence remain high. These factors, among others, suggest the need for more innovative treatment modalities in lung cancer therapy. Targeted pulmonary delivery is well established for treating pulmonary diseases such as asthma and provides a promising platform for lung cancer therapy. Increasing local deposition of anticancer agents (ACAs) and reducing systemic exposure of these toxic moieties could lead to better therapeutic outcomes and …


Persistent Hepatic Structural Alterations Following Nanoceria Vascular Infusion In The Rat, Michael T. Tseng, Qiang Fu, Khoua Lor, G. Rafael Fernandez-Botran, Zhong-Bin Deng, Uschi M. Graham, D. Allan Butterfield, Eric A. Grulke, Robert A. Yokel Aug 2014

Persistent Hepatic Structural Alterations Following Nanoceria Vascular Infusion In The Rat, Michael T. Tseng, Qiang Fu, Khoua Lor, G. Rafael Fernandez-Botran, Zhong-Bin Deng, Uschi M. Graham, D. Allan Butterfield, Eric A. Grulke, Robert A. Yokel

Chemistry Faculty Publications

Understanding the long-term effects and possible toxicity of nanoceria, a widely utilized commercial metal oxide, is of particular importance as it is poised for development as a therapeutic agent based on its autocatalytic redox behavior. We show here evidence of acute and subacute adverse hepatic responses, after a single infusion of an aqueous dispersion of 85 mg/kg, 30 nm nanoceria into Sprague Dawley rats. Light and electron microscopic evidence of avid uptake of nanoceria by Kupffer cells was detected as early as 1 hr after infusion. Biopersistent nanoceria stimulated cluster of differentiation 3+ lymphocyte proliferation that intermingled with nanoceria-containing …


Quantification Of Factors Governing Drug Release Kinetics From Nanoparticles: A Combined Experimental And Mechanistic Modeling Approach, Kyle Daniel Fugit Jan 2014

Quantification Of Factors Governing Drug Release Kinetics From Nanoparticles: A Combined Experimental And Mechanistic Modeling Approach, Kyle Daniel Fugit

Theses and Dissertations--Pharmacy

Advancements in nanoparticle drug delivery of anticancer agents require mathematical models capable of predicting in vivo formulation performance from in vitro characterization studies. Such models must identify and incorporate the physicochemical properties of the therapeutic agent and nanoparticle driving in vivo drug release. This work identifies these factors for two nanoparticle formulations of anticancer agents using an approach which develops mechanistic mathematical models in conjunction with experimental studies.

A non-sink ultrafiltration method was developed to monitor liposomal release kinetics of the anticancer agent topotecan. Mathematical modeling allowed simultaneous determination of drug permeability and interfacial binding to the bilayer from release …


The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi Jan 2013

The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi

Theses and Dissertations--Pharmacy

Liposomal delivery systems hold considerable promise for improvement of cancer therapy provided that critical formulation design criteria can be met. The main objective of the current project was to enable quality by design in the formulation of liposomal delivery systems by developing comprehensive, mechanism-based mathematical models of drug loading, binding and release kinetics that take into account not only the therapeutic requirement but the physicochemical properties of the drug, the bilayer membrane, and the intraliposomal microenvironment.

Membrane binding of the drug affects both drug loading and release from liposomes. The influence of bilayer composition and phase structure on the partitioning …


Rat Brain Pro-Oxidant Effects Of Peripherally Administered 5 Nm Ceria 30 Days After Exposure, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Rebecca L. Florence, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield Oct 2012

Rat Brain Pro-Oxidant Effects Of Peripherally Administered 5 Nm Ceria 30 Days After Exposure, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Rebecca L. Florence, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield

Chemistry Faculty Publications

The objective of this study was to determine the residual pro-or anti-oxidant effects in rat brain 30 days after systemic administration of a 5 nm citrate-stabilized ceria dispersion. A ∼4% aqueous ceria dispersion was iv-infused (0 or 85 mg/kg) into rats which were terminated 30 days later. Ceria concentration, localization, and chemical speciation in the brain was assessed by inductively coupled plasma mass spectrometry (ICP-MS), light and electron microscopy (EM), and electron energy loss spectroscopy (EELS), respectively. Pro- or anti-oxidant effects were evaluated by measuring levels of protein carbonyls (PC), 3-nitrotyrosine (3NT), and protein-bound-4-hydroxy-2-trans-nonenal (HNE) in the hippocampus, cortex, and …


Studies On Silicon Nmr Characterization And Kinetic Modeling Of The Structural Evolution Of Siloxane-Based Materials And Their Applications In Drug Delivery And Adsorption, Jyotrhirmai Ambati Jan 2011

Studies On Silicon Nmr Characterization And Kinetic Modeling Of The Structural Evolution Of Siloxane-Based Materials And Their Applications In Drug Delivery And Adsorption, Jyotrhirmai Ambati

University of Kentucky Doctoral Dissertations

This dissertation presents studies of the synthetic processes and applications of siloxane-based materials. Kinetic investigations of bridged organoalkoxysilanes that are precursors to organic-inorganic hybrid polysilsesquioxanes are a primary focus. Quick gelation despite extensive cyclization is found during the polymerization of bridged silane precursors except for silanes with certain short bridges. This work is an attempt to characterize and understand some of the distinct features of bridged silanes using experimental characterization, kinetic modeling and simulation. In addition to this, the dissertation shows how the properties of siloxane- materials can be engineered for drug delivery and adsorption.

The phase behavior of polymerizing …


Evaluation Of The Physicochemical Properties And Stability Of Solid Lipid Nanoparticles Designed For The Delivery Of Dexamethasone To Tumors, Melissa Howard Jan 2011

Evaluation Of The Physicochemical Properties And Stability Of Solid Lipid Nanoparticles Designed For The Delivery Of Dexamethasone To Tumors, Melissa Howard

University of Kentucky Doctoral Dissertations

Pre-clinical and clinical trials suggest that pre-treatment with dexamethasone (Dex) may facilitate enhanced uptake of subsequently administered chemotherapeutic agents. To reduce the side effects associated with systemic administration of Dex, solid lipid nanoparticles (SLNs) containing dexamethasone palmitate (Dex-P) were prepared as a means of achieving tumor-targeted drug delivery. These studies were aimed at evaluating the physicochemical properties and both the physiological and storage stability of the SLNs.

SLNs were prepared using nanotemplate engineering technology. Stearyl alcohol (SA) was used as the lipid phase with Brij® 78 and Polysorbate 60 as surfactants and PEG6000 monostearate as a long-chain PEGylating agent. …


Process Control Of Activated Sludge Treatment, Phase Ii, Richard I. Kermode, Robert W. J. Brett, Joseph D. Pault Jr. Jan 1975

Process Control Of Activated Sludge Treatment, Phase Ii, Richard I. Kermode, Robert W. J. Brett, Joseph D. Pault Jr.

KWRRI Research Reports

Material balances on substrate and microorganisms were derived in conjunction with various mixing configurations thought to accurately describe the activated sludge process. These models include the completely mixed with bypass, plug flow, and plug flow with bypass. Two sets of kinetic mechanisms for substrate utilization and bacterial growth were employed.

A feed forward controller was designed from linear approximations of the material balances derived in the completely mixed with bypass mixing model. Utilizing frequency response methods, the controller was found essentially identical to a completely mixed modeled controller developed in a prior investigation.

Through computer simulation the controller's effectiveness was …