Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Chemical Engineering

Model Of The Effect Of Voltage On Contact Angle In An Electrolytic Cell Reaction, Aaron Essilfie May 2024

Model Of The Effect Of Voltage On Contact Angle In An Electrolytic Cell Reaction, Aaron Essilfie

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

This paper investigates the hypothesis that the contact angle at the meniscus of an electrode-electrolyte can be altered during a redox reaction through the coupled understanding of electrowetting and capillarity rise. Recent studies in electrowetting have focused on dielectric surfaces but research on contact angle at the electrode-electrolyte surface is lacking. The study employs a basic electrolytic cell. By applying principles of electrowetting and capillary rise the research aims to understand the relationship between applied voltage and contact angle, to advancements in electrochemistry and microfluidics.


An Overview Of How To Measure The Kinetic Properties Of An Anode Material For The Chlorine Evolution Reaction, Cameron Vann May 2024

An Overview Of How To Measure The Kinetic Properties Of An Anode Material For The Chlorine Evolution Reaction, Cameron Vann

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The process of generating chlorine gas using electrolysis in aqueous systems is well established. However, a new process requires chlorine to be generated at high temperatures using molten salt. This harsh environment requires a new study of anode materials for the chlorine evolution reaction. Anode materials can be compared by their kinetic parameters, the transfer coefficient α and the exchange current i0. The basic theory of these properties as they relate to the chlorine evolution reaction has been detailed and an analysis method for finding these effective parameters has been shown and demonstrated.


Model To Demonstrate Effects Of Mass Transfer And Applied Current In An Electrolytic Cell, George Ankrah May 2024

Model To Demonstrate Effects Of Mass Transfer And Applied Current In An Electrolytic Cell, George Ankrah

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

This study investigates the relationship between applied current and resulting cell potential in an electrolytic system, considering the transport of electroactive species. By applying Michael Faraday's laws of electrolysis and the Nernst-Planck equation, the behavior of electroactive species in diffusion-controlled systems with and without stirring is modeled. The plots demonstrate how stirring enhances ion transport and establishes a stable Nernst diffusion layer, affecting the kinetics of electrochemical reactions. Understanding these dynamics is crucial for optimizing electrolysis processes.


Review Of Cyclic Voltammetry Measurements For Uranium In Flinak Molten Salt, Jackson Ivory May 2024

Review Of Cyclic Voltammetry Measurements For Uranium In Flinak Molten Salt, Jackson Ivory

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The electrochemical behavior of uranium FLiNaK molten salts is explored, focusing on cyclic voltammetry (CV) as a powerful tool for redox characterization and diffusion studies. Through a comprehensive review of recent research, the study highlights the significance of CV in understanding electrode kinetics, material compatibility, and process optimization in molten salt environments. The findings underscore the potential of FLiNaK molten salt reactors in advancing nuclear energy technologies, fuel processing, and waste management strategies. Collaborative interdisciplinary efforts are emphasized to address challenges and accelerate innovation in electrochemical methods for nuclear applications.