Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemical and Biomolecular Engineering

University of Kentucky

Center for Applied Energy Research Faculty and Staff Publications

Articles 1 - 2 of 2

Full-Text Articles in Chemical Engineering

Beneficial Reuse Of Industrial Co2 Emissions Using A Microalgae Photobioreactor: Waste Heat Utilization Assessment, Daniel T. Mohler, Michael H. Wilson, Zhen Fan, John G. Groppo, Mark Crocker Jul 2019

Beneficial Reuse Of Industrial Co2 Emissions Using A Microalgae Photobioreactor: Waste Heat Utilization Assessment, Daniel T. Mohler, Michael H. Wilson, Zhen Fan, John G. Groppo, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

Microalgae are a potential means of recycling CO2 from industrial point sources. With this in mind, a novel photobioreactor (PBR) was designed and deployed at a coal-fired power plant. To ascertain the feasibility of using waste heat from the power plant to heat algae cultures during cold periods, two heat transfer models were constructed to quantify PBR cooling times. The first, which was based on tabulated data, material properties and the physical orientation of the PBR tubes, yielded a range of heat transfer coefficients of 19–64 W m−2 K−1 for the PBR at wind speeds of 1–10 …


Reducing Biomass Recalcitrance By Heterologous Expression Of A Bacterial Peroxidase In Tobacco (Nicotiana Benthamiana), Ayalew Ligaba-Osena, Bertrand Hankoua, Kay Dimarco, Robert Pace, Mark Crocker, Jesse Mcatee, Nivedita Nagachar, Ming Tien, Tom L. Richard Dec 2017

Reducing Biomass Recalcitrance By Heterologous Expression Of A Bacterial Peroxidase In Tobacco (Nicotiana Benthamiana), Ayalew Ligaba-Osena, Bertrand Hankoua, Kay Dimarco, Robert Pace, Mark Crocker, Jesse Mcatee, Nivedita Nagachar, Ming Tien, Tom L. Richard

Center for Applied Energy Research Faculty and Staff Publications

Commercial scale production of biofuels from lignocellulosic feed stocks has been hampered by the resistance of plant cell walls to enzymatic conversion, primarily owing to lignin. This study investigated whether DypB, the lignin-degrading peroxidase from Rodococcus jostii, depolymerizes lignin and reduces recalcitrance in transgenic tobacco (Nicotiana benthamiana). The protein was targeted to the cytosol or the ER using ER-targeting and retention signal peptides. For each construct, five independent transgenic lines were characterized phenotypically and genotypically. Our findings reveal that expression of DypB in the cytosol and ER does not affect plant development. ER-targeting increased protein accumulation, and …