Open Access. Powered by Scholars. Published by Universities.®

Bioresource and Agricultural Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Microbiology

Adha

Articles 1 - 1 of 1

Full-Text Articles in Bioresource and Agricultural Engineering

Both Adhe And A Separate Nadph-Dependent Alcohol Dehydrogenase Gene, Adha, Are Necessary For High Ethanol Production In Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Sean J. Murphy, Xiongjun Shao, Liang Tian, Lee Lynd Nov 2017

Both Adhe And A Separate Nadph-Dependent Alcohol Dehydrogenase Gene, Adha, Are Necessary For High Ethanol Production In Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Sean J. Murphy, Xiongjun Shao, Liang Tian, Lee Lynd

Dartmouth Scholarship

Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at ∼90% theoretical yield and titer of 70 g/L. Its ethanol-producing ability has drawn attention to its metabolic pathways, which could potentially be transferred to other organisms of interest. Here we report that the iron-containing AdhA is important for ethanol production in the high-ethanol strain of T. saccharolyticum (LL1049). A single-gene deletion of adhA in LL1049 reduced ethanol production by ∼50%, whereas multiple gene deletions of all annotated alcohol dehydrogenases except adhA and adhE did not affect ethanol production. Deletion of adhA in wild-type T. saccharolyticum reduced NADPH-linked ADH activity (acetaldehyde-reducing) by …