Open Access. Powered by Scholars. Published by Universities.®

Bioresource and Agricultural Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Bioresource and Agricultural Engineering

Novel Pilot Development Of A Closed-Loop Sustainable System Between Biogas Renewable Energy, Distilling, And Aquaculture By Vermiculture Of Stillage Wastes, Samuel C. Kessler Sep 2021

Novel Pilot Development Of A Closed-Loop Sustainable System Between Biogas Renewable Energy, Distilling, And Aquaculture By Vermiculture Of Stillage Wastes, Samuel C. Kessler

The Cardinal Edge

This study provides a mixed-methods approach in analyzing a potential closed-loop system between renewable biogas production from anaerobic digestion, vermiculture production, aquaculture production, and organic wastes with a particular focus on stillage wastes. Such system may hold significant promise for significantly reducing organic carbon and methane emissions from its components, and should be assessed for such. The 2021 IPCC report essentially identified methane reduction as the single fastest way to slow global warming (IPCC, 2021), making the study and implementation of methane-reducing systems and supportive policy for them critical. Knowledge gaps to implementing this system were qualitatively identified as disconnect …


Understanding The Adhesion Mechanism In Mycelium-Assisted Wood Bonding, Wenjing Sun Aug 2021

Understanding The Adhesion Mechanism In Mycelium-Assisted Wood Bonding, Wenjing Sun

Electronic Theses and Dissertations

The increasing environmental awareness has led to an increased interest in developing more sustainable materials as alternatives to petroleum-derived products. Among different nature-based products, fungal-mycelium-based bio-composites have gained considerable attention in various applications. Multiple materials with different densities and structures and potential applications can be fabricated by inoculating filamentous white-rot fungi in lignocellulosic materials and other substrates. Different from lower-density as-grown foam-like mycelium composites, higher-density mycelium-lignocellulosic panels have the potential to replace commercial particleboard and fiberboard bonded by petroleum-based resins. This kind of composite can be produced by directly adding heat and pressure to the low-density foams or by assembling …