Open Access. Powered by Scholars. Published by Universities.®

Bioresource and Agricultural Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Bioresource and Agricultural Engineering

Both Adhe And A Separate Nadph-Dependent Alcohol Dehydrogenase Gene, Adha, Are Necessary For High Ethanol Production In Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Sean J. Murphy, Xiongjun Shao, Liang Tian, Lee Lynd Nov 2017

Both Adhe And A Separate Nadph-Dependent Alcohol Dehydrogenase Gene, Adha, Are Necessary For High Ethanol Production In Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Sean J. Murphy, Xiongjun Shao, Liang Tian, Lee Lynd

Dartmouth Scholarship

Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at ∼90% theoretical yield and titer of 70 g/L. Its ethanol-producing ability has drawn attention to its metabolic pathways, which could potentially be transferred to other organisms of interest. Here we report that the iron-containing AdhA is important for ethanol production in the high-ethanol strain of T. saccharolyticum (LL1049). A single-gene deletion of adhA in LL1049 reduced ethanol production by ∼50%, whereas multiple gene deletions of all annotated alcohol dehydrogenases except adhA and adhE did not affect ethanol production. Deletion of adhA in wild-type T. saccharolyticum reduced NADPH-linked ADH activity (acetaldehyde-reducing) by …


Fractionation And Characterization Of Lignin Streams From Genetically Engineered Switchgrass, Enshi Liu Jan 2017

Fractionation And Characterization Of Lignin Streams From Genetically Engineered Switchgrass, Enshi Liu

Theses and Dissertations--Biosystems and Agricultural Engineering

Development of biomass feedstocks with desirable traits for cost-effective conversion is one of the main focus areas in biofuels research. As suggested by techno-economic analyses, the success of a lignocellulose-based biorefinery largely relies on the utilization of lignin to generate value-added products, i.e. fuels and chemicals. The fate of lignin and its structural/compositional changes during pretreatment have received increasing attention; however, the effect of genetic modification on the fractionation, depolymerization and catalytic upgrading of lignin from genetically engineered plants is not well understood. This study aims to fractionate and characterize the lignin streams from a wild-type and two genetically engineered …


The Synthetic Biology Of N2-Fixing Cyanobacteria For Photosynthetic Terpenoid Production, Charles T. Halfmann Jan 2017

The Synthetic Biology Of N2-Fixing Cyanobacteria For Photosynthetic Terpenoid Production, Charles T. Halfmann

Electronic Theses and Dissertations

In the last few decades, concerns over global climate change, energy security, and environmental pollution have been rising. To overcome these challenges, the concept of “-nth generation” biofuels has emerged as a strategy to convert solar radiation into fuels and bulk industrial chemicals for societal use, while decreasing our consumption of nonrenewable energy sources. Nitrogen-fixing cyanobacteria hold a distinct advantage in biofuel production over plants, given their ability to convert sunlight, air (CO2 and N2), and mineralized water to energy-dense carbon molecules, as well as fix atmospheric nitrogen gas into ammonia for metabolism. Engineered cyanobacteria with …