Open Access. Powered by Scholars. Published by Universities.®

Bioresource and Agricultural Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Bioresource and Agricultural Engineering

Effectiveness Of Atmospheric Cold Plasma In Inactivating Microorganisms, Nadee Shanika Kaluwahandi Jan 2023

Effectiveness Of Atmospheric Cold Plasma In Inactivating Microorganisms, Nadee Shanika Kaluwahandi

Electronic Theses and Dissertations

In the food processing industry, Cold Plasma (CP) is an emerging green process with a number of potential applications. Cold plasma has mostly been used to reduce microbial counts in foodstuffs and biological materials as well as in different levels of packaging, particularly in cases where there is thermal sensitivity. Recent studies have demonstrated that CP technology is being developed for use in the food and agriculture industries. The primary focus is on the interactions between reactive species and food-borne microbes to inactivate them. The literature review discusses both proven and potential applications for cold plasma in food processing, as …


Exploration Of Lignin-Based Superabsorbent Polymers (Hydrogels) For Soil Water Management And As A Carrier For Delivering Rhizobium Spp., Toby Adjuik Jan 2022

Exploration Of Lignin-Based Superabsorbent Polymers (Hydrogels) For Soil Water Management And As A Carrier For Delivering Rhizobium Spp., Toby Adjuik

Theses and Dissertations--Biosystems and Agricultural Engineering

Superabsorbent polymers (hydrogels) as soil amendments may improve soil hydraulic properties and act as carrier materials beneficial to soil microorganisms. Researchers have mostly explored synthetic hydrogels which may not be environmentally sustainable. This dissertation focused on the development and application of lignin-based hydrogels as sustainable soil amendments. This dissertation also explores the development of pedotransfer transfer functions (PTFs) for predicting saturated hydraulic conductivity using statistical and machine learning methods with a publicly available large data set. A lignin-based hydrogel was synthesized, and its impact on soil water retention was determined in silt loam and loamy fine sand soils. Hydrogel treatment …


Understanding The Adhesion Mechanism In Mycelium-Assisted Wood Bonding, Wenjing Sun Aug 2021

Understanding The Adhesion Mechanism In Mycelium-Assisted Wood Bonding, Wenjing Sun

Electronic Theses and Dissertations

The increasing environmental awareness has led to an increased interest in developing more sustainable materials as alternatives to petroleum-derived products. Among different nature-based products, fungal-mycelium-based bio-composites have gained considerable attention in various applications. Multiple materials with different densities and structures and potential applications can be fabricated by inoculating filamentous white-rot fungi in lignocellulosic materials and other substrates. Different from lower-density as-grown foam-like mycelium composites, higher-density mycelium-lignocellulosic panels have the potential to replace commercial particleboard and fiberboard bonded by petroleum-based resins. This kind of composite can be produced by directly adding heat and pressure to the low-density foams or by assembling …


Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted Dec 2020

Approaches To Studying Bacterial Biofilms In The Bioeconomy With Nanofabrication Techniques And Engineered Platforms., Michelle Caroline Halsted

Doctoral Dissertations

Studies that estimate more than 90% of bacteria subsist in a biofilm state to survive environmental stressors. These biofilms persist on man-made and natural surfaces, and examples of the rich biofilm diversity extends from the roots of bioenergy crops to electroactive biofilms in bioelectrochemical reactors. Efforts to optimize microbial systems in the bioeconomy will benefit from an improved fundamental understanding of bacterial biofilms. An understanding of these microbial systems shows promise to increase crop yields with precision agriculture (e.g. biosynthetic fertilizer, microbial pesticides, and soil remediation) and increase commodity production yields in bioreactors. Yet conventional laboratory methods investigate these micron-scale …


The Release, Transport, And Utilization Of Phosphorus From Bed-Sediments: A Study Of A Eutrophic Littoral Cove On Beaver Lake In Northwest Arkansas, James A. Mccarty May 2020

The Release, Transport, And Utilization Of Phosphorus From Bed-Sediments: A Study Of A Eutrophic Littoral Cove On Beaver Lake In Northwest Arkansas, James A. Mccarty

Graduate Theses and Dissertations

Eutrophication of surface waters not only impacts the environment but also water treatment processes, the most significant of which is from the effects of algae. During peak algal growth in many southern U.S. reservoirs, inflows that bring nutrients are at an annual minimum, and phosphorus released from bed-sediments is trapped in the hypolimnion. Littoral areas, described as the most productive zone of the lake, may be a possible source of phosphorus that fuels algal growth in the reservoir. I studied an isolated shallow cove in the War Eagle Creek arm of Beaver Lake in Northwest Arkansas to measure, quantify, and …


Cultivating Ecosystems: Microbial Communities In Recirculating Aquaculture Systems, Ryan Bartelme Aug 2018

Cultivating Ecosystems: Microbial Communities In Recirculating Aquaculture Systems, Ryan Bartelme

Theses and Dissertations

Intensive cultivation of fish is necessary to meet future global market demands. Recirculating aquaculture systems (RAS) enable dense growth of fish, while occupying less space than traditional aquaculture farms. However, RAS often experience complications and high fish mortalities due to disease and improper waste management. In properly functioning systems, the microorganisms associated with fish (gut, scales) as well as those found in the system environment (water, component surfaces) remove waste and maintain fish health by discouraging growth of opportunistic pathogens. Previous RAS microbiome studies are small in scope, utilize coarse methods, and contain limited long-term spatial or temporal data. With …


Chloride Salt Inhibition On Lipid Production In Wastewater-Grown Algae For Biofuel Production, Will Richardson May 2018

Chloride Salt Inhibition On Lipid Production In Wastewater-Grown Algae For Biofuel Production, Will Richardson

Biological and Agricultural Engineering Undergraduate Honors Theses

Algae are increasingly being recognized as useful organisms for many applications in today’s world. Their ability to remove nitrogen, phosphorus, and trace metals from water while adding oxygen to water makes them an attractive tertiary treatment technology in municipal wastewater treatment facilities. At the same time, algae produce lipids and carbohydrates that are useful for biofuel production, and they are not a human food crop unlike many biofuel feedstocks. In this study the effect of increased chloride concentrations in wastewater was assessed on the ability of two species of algae, Chlorella vulgaris and Scenedesmus dimorphus, to function as a …


Fractionation And Characterization Of Lignin Streams From Genetically Engineered Switchgrass, Enshi Liu Jan 2017

Fractionation And Characterization Of Lignin Streams From Genetically Engineered Switchgrass, Enshi Liu

Theses and Dissertations--Biosystems and Agricultural Engineering

Development of biomass feedstocks with desirable traits for cost-effective conversion is one of the main focus areas in biofuels research. As suggested by techno-economic analyses, the success of a lignocellulose-based biorefinery largely relies on the utilization of lignin to generate value-added products, i.e. fuels and chemicals. The fate of lignin and its structural/compositional changes during pretreatment have received increasing attention; however, the effect of genetic modification on the fractionation, depolymerization and catalytic upgrading of lignin from genetically engineered plants is not well understood. This study aims to fractionate and characterize the lignin streams from a wild-type and two genetically engineered …


The Synthetic Biology Of N2-Fixing Cyanobacteria For Photosynthetic Terpenoid Production, Charles T. Halfmann Jan 2017

The Synthetic Biology Of N2-Fixing Cyanobacteria For Photosynthetic Terpenoid Production, Charles T. Halfmann

Electronic Theses and Dissertations

In the last few decades, concerns over global climate change, energy security, and environmental pollution have been rising. To overcome these challenges, the concept of “-nth generation” biofuels has emerged as a strategy to convert solar radiation into fuels and bulk industrial chemicals for societal use, while decreasing our consumption of nonrenewable energy sources. Nitrogen-fixing cyanobacteria hold a distinct advantage in biofuel production over plants, given their ability to convert sunlight, air (CO2 and N2), and mineralized water to energy-dense carbon molecules, as well as fix atmospheric nitrogen gas into ammonia for metabolism. Engineered cyanobacteria with …


Methane Production By A Packed-Bed Anaerobic Digester Fed Dairy Barn Flush Water, Sean Richard Thomson Dec 2014

Methane Production By A Packed-Bed Anaerobic Digester Fed Dairy Barn Flush Water, Sean Richard Thomson

Master's Theses

Packed-bed digesters are an alternative to covered lagoon digesters for methane production and anaerobic treatment of dilute wastewaters such as dairy barn flush water. The physical media of packed-beds retain biofilms, often allowing increased treatment rates. Previous studies have evaluated several types of media for digestion of dilute wastewaters, but cost and media fouling have setback commercial development. A major operational cost has been effluent recirculation pumping.

In the present effort, a novel approach to anaerobic digestion of flush dairy water was developed at pilot-scale: broken walnut shells were used as a low-cost packed-bed medium and effluent recirculation was replaced …


The Effects Of Ocean Acidification And Eutrophication On The Growth, Lipid Composition And Toxicity Of The Marine Raphidophyte Heterosigma Akashiwo., Julia Rose Matheson Apr 2014

The Effects Of Ocean Acidification And Eutrophication On The Growth, Lipid Composition And Toxicity Of The Marine Raphidophyte Heterosigma Akashiwo., Julia Rose Matheson

Electronic Thesis and Dissertation Repository

Anthropogenic forcing, such as ocean acidification caused by rising carbon dioxide emissions, and eutrophication due to increased nutrient loadings in run-off, are causing major changes to the biogeochemistry of the oceans. As a consequence, coastal phytoplankton are susceptible to altered biogeochemical environments. This study examined the effect of a lower pH and increased levels of nutrients on the common coastal harmful alga, Heterosigma akashiwo. Growth rates, maximal cell yields, neutral lipid accumulation and toxicity of cells grown under various pH and nutrients regimes were measured. H. akashiwo growth was near maximal when grown at lower pH levels. There was …