Open Access. Powered by Scholars. Published by Universities.®

Bioresource and Agricultural Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Bioresource and Agricultural Engineering

Reducing Equifinality Using Isotopes In A Process-Based Stream Nitrogen Model Highlights The Flux Of Algal Nitrogen From Agricultural Streams, William I. Ford, James F. Fox, Erik Pollock Aug 2017

Reducing Equifinality Using Isotopes In A Process-Based Stream Nitrogen Model Highlights The Flux Of Algal Nitrogen From Agricultural Streams, William I. Ford, James F. Fox, Erik Pollock

Biosystems and Agricultural Engineering Faculty Publications

The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass‐balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic …


Analysis Of The Flow Behaviors Of Corn Meal During Extrusion, Daniel N. Hauersperger, Martin R. Okos, Troy Tonner Aug 2017

Analysis Of The Flow Behaviors Of Corn Meal During Extrusion, Daniel N. Hauersperger, Martin R. Okos, Troy Tonner

The Summer Undergraduate Research Fellowship (SURF) Symposium

Food extrusion can be used to make many products we consume today, including pasta, cereals and more. The ability to predict the characteristics of the final product from an extruder using raw material characteristics and operating conditions is vital to the extrusion process. In order to answer this need, the flow behavior of corn meal was measured in a lab viscometer (off-line) and compared to the flow behaviors from an extruder (in-line) at three different moisture contents (32.5%, 35%, 37.5% wet basis). The extruder and product are heated through the friction of the corn meal passing through the barrel not …