Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Bioimaging and Biomedical Optics

3d Thoracoscopic Ultrasound Volume Measurement Validation In An Ex Vivo And In Vivo Porcine Model Of Lung Tumours, V. Hornblower, E. Yu, A. Fenster, J. Battista, R. Malthaner Jul 2015

3d Thoracoscopic Ultrasound Volume Measurement Validation In An Ex Vivo And In Vivo Porcine Model Of Lung Tumours, V. Hornblower, E. Yu, A. Fenster, J. Battista, R. Malthaner

Richard A. Malthaner

The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial "tumours" were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the "tumours" were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the …


3d Thoracoscopic Ultrasound Volume Measurement Validation In An Ex Vivo And In Vivo Porcine Model Of Lung Tumours, V. Hornblower, E. Yu, A. Fenster, J. Battista, R. Malthaner Jul 2015

3d Thoracoscopic Ultrasound Volume Measurement Validation In An Ex Vivo And In Vivo Porcine Model Of Lung Tumours, V. Hornblower, E. Yu, A. Fenster, J. Battista, R. Malthaner

Richard A. Malthaner

The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial "tumours" were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the "tumours" were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the …


Automated Point-Of-Care Image Processing Methodology For The Diagnosis Of Malaria, Michael B. Jorgensen Jan 2013

Automated Point-Of-Care Image Processing Methodology For The Diagnosis Of Malaria, Michael B. Jorgensen

Master's Theses

Malaria has profoundly influenced human history for over four thousand years and despite numerous attempts at eradication, the prevention, diagnosis, and treatment of malaria have been largely ineffective. More than five hundred million people are affected by malaria every year resulting in over one million deaths. Drug resistance development by the parasite has diminished the effectiveness of numerous treatment options due, in part, to overtreatment of negative patients based on insufficient clinical algorithms and diagnostic methods. The goal of this research was to develop an image analysis algorithm to diagnose malaria with a high degree of sensitivity and specificity in …


Towards Omni-Tomography -- Grand Fusion Of Multiple Modalities For Simultaneous Interior Tomography, Ge Wang, Jie Zhang, Hao Gao, Victor Weir, Hengyong Yu, Wenxiang Cong, Xiaochen Xu, Haiou Shen, James Bennett, Mark Furth, Yue Wang, Michael Vannier Jun 2012

Towards Omni-Tomography -- Grand Fusion Of Multiple Modalities For Simultaneous Interior Tomography, Ge Wang, Jie Zhang, Hao Gao, Victor Weir, Hengyong Yu, Wenxiang Cong, Xiaochen Xu, Haiou Shen, James Bennett, Mark Furth, Yue Wang, Michael Vannier

Radiology Faculty Publications

We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose "omni-tomography", a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality …


A Fully Automated Non-External Marker 4d-Ct Sorting Algorithm Using A Serial Cine Scanning Protocol, Greg Carnes, Stewart Gaede, Edward Yu, Jake Van Dyk, Jerry Battista, Ting-Yim Lee Apr 2009

A Fully Automated Non-External Marker 4d-Ct Sorting Algorithm Using A Serial Cine Scanning Protocol, Greg Carnes, Stewart Gaede, Edward Yu, Jake Van Dyk, Jerry Battista, Ting-Yim Lee

Edward Yu

Current 4D-CT methods require external marker data to retrospectively sort image data and generate CT volumes. In this work we develop an automated 4D-CT sorting algorithm that performs without the aid of data collected from an external respiratory surrogate. The sorting algorithm requires an overlapping cine scan protocol. The overlapping protocol provides a spatial link between couch positions. Beginning with a starting scan position, images from the adjacent scan position (which spatial match the starting scan position) are selected by maximizing the normalized cross correlation (NCC) of the images at the overlapping slice position. The process was continued by 'daisy …


3d Thoracoscopic Ultrasound Volume Measurement Validation In An Ex Vivo And In Vivo Porcine Model Of Lung Tumours, V. Hornblower, E. Yu, A. Fenster, J. Battista, R. Malthaner Jan 2007

3d Thoracoscopic Ultrasound Volume Measurement Validation In An Ex Vivo And In Vivo Porcine Model Of Lung Tumours, V. Hornblower, E. Yu, A. Fenster, J. Battista, R. Malthaner

Edward Yu

The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial "tumours" were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the "tumours" were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the …