Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Tissue engineering

Theses and Dissertations

2006

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Scaffold Permeability As A Means To Determine Fiber Diameter And Pore Size Of Electrospun Fibrinogen, Scott Allen Sell Jan 2006

Scaffold Permeability As A Means To Determine Fiber Diameter And Pore Size Of Electrospun Fibrinogen, Scott Allen Sell

Theses and Dissertations

The purpose of this study was to construct a flowmeter that could accurately measure the hydraulic permeability of electrospun fibrinogen scaffolds, providing insight into the transport properties of electrospun scaffolds while making the measurement of their topographical features (fiber and pore size) more accurate. Three different concentrations of fibrinogen were used (100, 120, and 150mg/ml) to create scaffolds with three different fiber diameters and pore sizes. The fiber diameters and pore sizes of the electrospun scaffolds were analyzed through scanning electron microscopy and image analysis software. The permeability of each scaffold was measured and used to calculate permeability-based fiber diameters …


Determination Of The Mechanical Properties Of Electrospun Gelatin Based On Polymer Concentration And Fiber Alignment, Leander Taylor Iii Jan 2006

Determination Of The Mechanical Properties Of Electrospun Gelatin Based On Polymer Concentration And Fiber Alignment, Leander Taylor Iii

Theses and Dissertations

The process of electrospinning has given the field of tissue engineering insight into many aspects of tissue engineered scaffolds, including how factors such as fiber diameter and porosity are affected by polymer concentration. However, the affects of fiber alignment upon the material properties of electrospun scaffolds remains unclear. The purpose of this study is to determine how the material properties of electrospun gelatin scaffolds are affected by changes in fiber alignment and starting gelatin concentration. Gelatin scaffolds, with starting concentrations of 80, 100, and 130mg/m1, were electrospun onto a target mandrel rotating at various speeds. Samples of each scaffold were …