Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Humidity Effect On The Structure Of Electrospun Core-Shell Pcl-Peg Fibers For Tissue Regeneration Applications, Adam P. Golin Apr 2014

Humidity Effect On The Structure Of Electrospun Core-Shell Pcl-Peg Fibers For Tissue Regeneration Applications, Adam P. Golin

Electronic Thesis and Dissertation Repository

With the aim of creating a biodegradable scaffold for tympanic membrane (TM) tissue regeneration, core-shell nanofibers composed of a poly(caprolactone) shell and a poly(ethylene glycol) core were created using a coaxial electrospinning technique. In order to create fibers with an optimal core-shell morphology, the effect of relative humidity (RH) on the core-shell nanofibers was systematically studied, with a FITC-BSA complex encapsulated in the core to act as a model protein. The core-shell nanofibers were electrospun at relative humidity values of 20, 25, 30, and 40% RH within a glove box outfitted for humidity control. The core-shell morphology of the fibers …


Nanomechanics Of Electrospun Nanofibres For Tissue Engineering Of The Tympanic Membrane, Sara Makaremi Dec 2012

Nanomechanics Of Electrospun Nanofibres For Tissue Engineering Of The Tympanic Membrane, Sara Makaremi

Electronic Thesis and Dissertation Repository

The Tympanic Membrane (TM), also known as the eardrum, includes layers of organized collagen nanofibres which play an essential role in sound transmission. Perforations that are caused by infection or accident must be repaired in order to restore hearing. Tympanoplasty is performed using grafts that are prepared from bladder, cartilage, temporal fascia and cadaveric skin. However, since mechanical properties of these grafts do not match those of the original TM, normal hearing is not fully restored. The goal of this study is to develop nanofibrous scaffolds for tissue engineering of the TM in order to circumvent the complications addressed with …