Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoparticles

2016

University of Tennessee, Knoxville

Articles 1 - 1 of 1

Full-Text Articles in Biomedical Engineering and Bioengineering

Magnetism Of Magnetite Nanoparticles As Determined By Mössbauer Spectroscopy, Hien-Yoong Hah May 2016

Magnetism Of Magnetite Nanoparticles As Determined By Mössbauer Spectroscopy, Hien-Yoong Hah

Masters Theses

Fe3O4 [Magnetite] nanoparticles have magnetism that differs greatly from their bulk counterparts. Whereas bulk Fe3O4 is a ferrimagnet, single-domain Fe3O4 nanoparticles have been found to be superparamagnetic. This allows for increased magnetization of the nanoparticles compared to the bulk when in a magnetic field. For most paramagnets, magnetization requires applied fields of a few Tesla at low temperatures. This is achievable through the application of superconducting magnets. In superparamagnets, the high susceptibility of the particles allows magnetization through a Nd-Fe-B permanent magnet at room temperature. This is caused by an increased …