Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Humans

Series

Medical Specialties

Dartmouth Scholarship

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

An Imaging-Based Platform For High-Content, Quantitative Evaluation Of Therapeutic Response In 3d Tumour Models, Jonathan P. Celli, Imran Rizvi, Adam R. Blanden, Iqbal Massodi, Iqbal Massodi, Michael D. Glidden, Brian Pogue, Tayyaba Hasan Jan 2014

An Imaging-Based Platform For High-Content, Quantitative Evaluation Of Therapeutic Response In 3d Tumour Models, Jonathan P. Celli, Imran Rizvi, Adam R. Blanden, Iqbal Massodi, Iqbal Massodi, Michael D. Glidden, Brian Pogue, Tayyaba Hasan

Dartmouth Scholarship

While it is increasingly recognized that three-dimensional (3D) cell culture models recapitulate drug responses of human cancers with more fidelity than monolayer cultures, a lack of quantitative analysis methods limit their implementation for reliable and routine assessment of emerging therapies. Here, we introduce an approach based on computational analysis of fluorescence image data to provide high-content readouts of dose-dependent cytotoxicity, growth inhibition, treatment-induced architectural changes and size-dependent response in 3D tumour models. We demonstrate this approach in adherent 3D ovarian and pancreatic multiwell extracellular matrix tumour overlays subjected to a panel of clinically relevant cytotoxic modalities and appropriately designed controls …


Quantitative, Spectrally-Resolved Intraoperative Fluorescence Imaging, Pablo A. Valdés, Frederic Leblond, Valerie L. Jacobs, Brian C. Wilson, Keith D. Paulsen, David W. Roberts Nov 2012

Quantitative, Spectrally-Resolved Intraoperative Fluorescence Imaging, Pablo A. Valdés, Frederic Leblond, Valerie L. Jacobs, Brian C. Wilson, Keith D. Paulsen, David W. Roberts

Dartmouth Scholarship

Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the …


Imaging Breast Adipose And Fibroglandular Tissue Molecular Signatures By Using Hybrid Mri-Guided Near-Infrared Spectral Tomography, Ben Brooksby, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Subhadra Srinivasan, Christine Kogel, Tor D. Tosteson, John Weaver, Steven P. Poplack, Keith D. Paulsen Jun 2006

Imaging Breast Adipose And Fibroglandular Tissue Molecular Signatures By Using Hybrid Mri-Guided Near-Infrared Spectral Tomography, Ben Brooksby, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Subhadra Srinivasan, Christine Kogel, Tor D. Tosteson, John Weaver, Steven P. Poplack, Keith D. Paulsen

Dartmouth Scholarship

Magnetic resonance (MR)-guided near-infrared spectral tomography was developed and used to image adipose and fibroglandular breast tissue of 11 normal female subjects, recruited under an institutional review board-approved protocol. Images of hemoglobin, oxygen saturation, water fraction, and subcellular scattering were reconstructed and show that fibroglandular fractions of both blood and water are higher than in adipose tissue. Variation in adipose and fibroglandular tissue composition between individuals was not significantly different across the scattered and dense breast categories. Combined MR and near-infrared tomography provides fundamental molecular information about these tissue types with resolution governed by MR T1 images.


Interpreting Hemoglobin And Water Concentration, Oxygen Saturation, And Scattering Measured In Vivo By Near-Infrared Breast Tomography, Subhadra Srinivasan, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Christine Kogel, Sandra Soho, Jennifer J. Gibson, Tor D. Tosteson, Steven P. Poplack, Keith D. Paulsen Oct 2003

Interpreting Hemoglobin And Water Concentration, Oxygen Saturation, And Scattering Measured In Vivo By Near-Infrared Breast Tomography, Subhadra Srinivasan, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Christine Kogel, Sandra Soho, Jennifer J. Gibson, Tor D. Tosteson, Steven P. Poplack, Keith D. Paulsen

Dartmouth Scholarship

Near-infrared spectroscopic tomography was used to measure the properties of 24 mammographically normal breasts to quantify whole-breast absorption and scattering spectra and to evaluate which tissue composition characteristics can be determined from these spectra. The absorption spectrum of breast tissue allows quantification of (i) total hemoglobin concentration, (ii) hemoglobin oxygen saturation, and (iii) water concentration, whereas the scattering spectrum provides information about the size and number density of cellular components and structural matrix elements. These property data were tested for correlation to demographic information, including subject age, body mass index, breast size, and radiographic …