Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Exploring Cell Differentiation Vs. Localization In Engineered Ligament-To-Bone Entheses, Saagar N. Sheth, Michael E. Brown, Jennifer L. Puetzer Jan 2022

Exploring Cell Differentiation Vs. Localization In Engineered Ligament-To-Bone Entheses, Saagar N. Sheth, Michael E. Brown, Jennifer L. Puetzer

Undergraduate Research Posters

The anterior cruciate ligament (ACL) connects to bone via structurally complex insertions known as entheses that translate load from elastic ligament and stiff bone via gradients in organization, composition, and cell phenotype [1]. These gradients are not recreated in graft repair or engineered replacements, yielding limited repair options and high failure rates [2]. Previously, we developed a culture system that uses a tensile-compressive interface to guide ligament fibroblasts to develop early postnatal-like entheses by 6 weeks [3]; however, cells used were isolated from the entirety of the neonatal bovine ACL from bone to bone and likely contained multiple cell phenotypes …


Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David May 2021

Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David

Biomedical Engineering Undergraduate Honors Theses

Despite significant progress in the field of peripheral nerve repair, clinical success is still limited, leaving millions to suffer from peripheral neuropathy with billions spent every year for treatment. Nerve repair methods that are capable of maximizing the regenerative properties of peripheral nerves are greatly desired in the field of medical science. This research aims to fill the gap between modern methods and the future of nerve repair by creating type-I collagen scaffolds with aligned degradation pores that will assist and nurture nerves growing through them. This is achieved by incorporating adipose stem cells into type-I collagen hydrogels and aligning …


All-Wheel-Ukraine, Sofiya Rakovska, Hannah Mcculloch, Andrey Garasimchuk, Ahmad Alsaihati Jan 2020

All-Wheel-Ukraine, Sofiya Rakovska, Hannah Mcculloch, Andrey Garasimchuk, Ahmad Alsaihati

Williams Honors College, Honors Research Projects

We are working with a non-profit organization in Ukraine that provides wheelchairs/strollers to families of disables children who cannot afford them. Their current preferred solution is a baby stroller. The organization asked us to create a wheelchair that is cost efficient, light and collapsible to be used for children ages up to thirteen years old. We will be creating an alpha prototype wheelchair by modifying a basic wheelchair that we purchased. This modifications include adding a headrest that is adjustable and provides a sufficient support for children within the age group given to us and diverse levels of disabilities. We …


Using Crosslinked Hyaluronic Acid (Ha) And Collagen Scaffolds With Sustained Brain-Derived Neurotrophic Factor (Bdnf) Release For Post-Sci Nerve Regeneration, Panth Doshi Jan 2018

Using Crosslinked Hyaluronic Acid (Ha) And Collagen Scaffolds With Sustained Brain-Derived Neurotrophic Factor (Bdnf) Release For Post-Sci Nerve Regeneration, Panth Doshi

Undergraduate Research Posters

Traumatic events resulting in spinal cord injuries (SCIs) often leave people paralyzed or with partial loss of motor function. The physical disabilities arising from traumatic events prevent people from functioning at the same level as pre-injury. My work aims to identify a plausible method to overcome the inhibitory post-SCI environment and to regenerate nervous tissue in order to restore neural function and, subsequently, motor function. I identified components of a new, hypothetical nerve scaffold based on the immune response after SCIs and the efficacy of currently used scaffolds for nerve regeneration. Hyaluronic acid (HA) polymer scaffolds and collagen-based scaffolds are …


Automated Microscopy Platform For High-Throughput Analysis Of Cellular Characteristics, Hussam Ibrahim Jul 2016

Automated Microscopy Platform For High-Throughput Analysis Of Cellular Characteristics, Hussam Ibrahim

Physics: Student Scholarship & Creative Works

Existing microscopy platforms allow analysis post-hoc, but not in real time. This is an issue in the world of Bioengineering because you are limited to performing further analysis on specimen. The aim of my research was to design a sophisticated system whereby information can be exchanged between the software which acquires images and software that analyzes the images immediately after acquisition. In this system, images would be acquired by the microscope and analyzed by customized scripts (MATLAB, Mathworks) in real time. Specifically, MATLAB would wait for new images to be saved on the hard drive, import these images, and perform …


Design And Production Of A Hydrogel Forming Polypeptide: Engaging High School Students In Protein Design, James K. Deyling Jan 2016

Design And Production Of A Hydrogel Forming Polypeptide: Engaging High School Students In Protein Design, James K. Deyling

ETD Archive

Bioinks are a class of hydrogel that have the potential to be the ink used in the creation of printed organs, connective tissue, and other important structures within the body. One class of material that may be a suitable bioink hydrogel is elastin-like polypeptides (ELPs), which are synthetic biopolymers inspired by the naturally existing connective tissue elastin. ELPs consist of a repeat pentapeptide sequence (GXGVP)n, where X is any of the 20 naturally existing amino acids other than proline. These biomolecules are capable of exhibiting environmental responsiveness when exposed to certain stimulus such as salt concentration, temperature, and pH, depending …


Fluorescent Biosensors To Measure Endothelial Cell Responses To Fluid Shear Stress, Natalie Noll Jan 2015

Fluorescent Biosensors To Measure Endothelial Cell Responses To Fluid Shear Stress, Natalie Noll

Undergraduate Research Posters

The response of endothelial cells, innermost layer of blood vessels, to blood flow is thought to be critical in the initiation and progression of atherosclerosis. Atherosclerosis in the human body is non-random and is highly correlated to vessel sites which experience oscillatory and reversing blood flow. Endothelial cells (ECs), the inner most cell layer of blood vessels are highly responsive to the drag force from blood flow, known as shear stress. To study endothelial cell responses to shear stress we used a parallel plate flow chamber in which we exposed endothelial cells to defined fluid shear stress. Using fluorescence resonance …