Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov Dec 2018

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov

Master's Theses

Transtibial amputees are at increased risk of contralateral hip and knee joint osteoarthritis, likely due to abnormal biomechanics. Biomechanical challenges exist for transtibial amputees in gait and cycling; particularly, asymmetry in ground/pedal reaction forces and joint kinetics is well documented and state-of-the-art passive and powered prostheses do not fully restore natural biomechanics. Elliptical training has not been studied as a potential exercise for rehabilitation, nor have any studies been published that compare joint kinematics and kinetics and ground/pedal reaction forces for the same group of transtibial amputees in gait, cycling, and elliptical training. The hypothesis was that hip and knee …


Neuromuscular Reflex Control For Prostheses And Exoskeletons, Sandra K. Hnat Jan 2018

Neuromuscular Reflex Control For Prostheses And Exoskeletons, Sandra K. Hnat

ETD Archive

Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors …


Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin Jan 2018

Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin

ETD Archive

Predictive simulations predict human gait by solving a trajectory optimization problem by minimizing energy expenditure. These simulations could predict the effect of a prosthesis on gait before its use. This dissertation has four aims, to show the application of predictive simulations in prosthesis design and to improve the quality of predictive simulations. Aim 1 was to explain joint moment asymmetry in the knee and hip in gait of persons with a transtibial amputation (TTA gait). Predictive simulations showed that an asymmetric gait required less effort. However, a small effort increase yielded a gait with increased joint moment symmetry and reduced …


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to …