Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons Aug 2019

Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons

Boise State University Theses and Dissertations

Outcomes of total knee arthroplasty (TKA) are dependent on surgical technique, patient variability, and implant design. Non-optimal design or alignment choices may result in undesirable contact mechanics and joint kinematics, including poor joint alignment, instability, and reduced range of motion. Implant design and surgical alignment are modifiable factors with potential to improve patient outcomes, and there is a need for robust implant designs that can accommodate patient variability. Our objective was to develop a statistical shape-function model (SFM) of a posterior stabilized implant knee to instantaneously predict output mechanics in an efficient manner. Finite element methods were combined with Latin …


Mechanochemical Regulation Of Epithelial Tissue Remodeling: A Multiscale Computational Model Of The Epithelial-Mesenchymal Transition Program, Lewis Scott Jan 2019

Mechanochemical Regulation Of Epithelial Tissue Remodeling: A Multiscale Computational Model Of The Epithelial-Mesenchymal Transition Program, Lewis Scott

Theses and Dissertations

Epithelial-mesenchymal transition (EMT) regulates the cellular processes of migration, growth, and proliferation - as well as the collective cellular process of tissue remodeling - in response to mechanical and chemical stimuli in the cellular microenvironment. Cells of the epithelium form cell-cell junctions with adjacent cells to function as a barrier between the body and its environment. By distributing localized stress throughout the tissue, this mechanical coupling between cells maintains tensional homeostasis in epithelial tissue structures and provides positional information for regulating cellular processes. Whereas in vitro and in vivo models fail to capture the complex interconnectedness of EMT-associated signaling networks, …