Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Evaluation Of Drug-Loaded Gold Nanoparticle Cytotoxicity As A Function Of Tumor Tissue Heterogeneity., Hunter Allan Miller Aug 2018

Evaluation Of Drug-Loaded Gold Nanoparticle Cytotoxicity As A Function Of Tumor Tissue Heterogeneity., Hunter Allan Miller

Electronic Theses and Dissertations

The inherent heterogeneity of tumor tissue presents a major challenge to nanoparticle-medicated drug delivery. This heterogeneity spans from the molecular to the cellular (cell types) and to the tissue (vasculature, extra-cellular matrix) scales. Here we employ computational modeling to evaluate therapeutic response as a function of vascular-induced tumor tissue heterogeneity. Using data with three-layered gold nanoparticles loaded with cisplatin, nanotherapy is simulated with different levels of tissue heterogeneity, and the treatment response is measured in terms of tumor regression. The results show that tumor vascular density non-trivially influences the nanoparticle uptake and washout, and the associated tissue response. The drug …


Nanopulse Stimulation (Nps) Induces Tumor Ablation And Immunity In Orthotopic 4t1 Mouse Breast Cancer: A Review, Stephen J. Beebe, Brittany P. Lassiter, Siqi Guo Jan 2018

Nanopulse Stimulation (Nps) Induces Tumor Ablation And Immunity In Orthotopic 4t1 Mouse Breast Cancer: A Review, Stephen J. Beebe, Brittany P. Lassiter, Siqi Guo

Bioelectrics Publications

Nanopulse Stimulation (NPS) eliminates mouse and rat tumor types in several different animal models. NPS induces protective, vaccine-like effects after ablation of orthotopic rat N1-S1 hepatocellular carcinoma. Here we review some general concepts of NPS in the context of studies with mouse metastatic 4T1 mammary cancer showing that the postablation, vaccine-like effect is initiated by dynamic, multilayered immune mechanisms. NPS eliminates primary 4T1 tumors by inducing immunogenic, caspase-independent programmed cell death (PCD). With lower electric fields, like those peripheral to the primary treatment zone, NPS can activate dendritic cells (DCs). The activation of DCs by dead/dying cells leads to increases …