Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Uncoupling Fermentative Synthesis Of Molecular Hydrogen From Biomass Formation In Thermotoga Maritima, Raghuveer Singh, Derrick White, Yaşar Demirel, Robert Kelley, Kenneth Noll, Paul H. Blum Aug 2018

Uncoupling Fermentative Synthesis Of Molecular Hydrogen From Biomass Formation In Thermotoga Maritima, Raghuveer Singh, Derrick White, Yaşar Demirel, Robert Kelley, Kenneth Noll, Paul H. Blum

Department of Chemical and Biomolecular Engineering: Faculty Publications

When carbohydrates are fermented by the hyperthermophilic anaerobe Thermotoga maritima, molecular hydrogen (H2) is formed in strict proportion to substrate availability. Excretion of the organic acids acetate and lactate provide an additional sink for removal of excess reductant. However, mechanisms controlling energy management of these metabolic pathways are largely unexplored. To investigate this topic, transient gene inactivation was used to block lactate production as a strategy to produce spontaneous mutant cell lines that overproduced H2 through mutation of unpredicted genetic targets. Single-crossover homologous chromosomal recombination was used to disrupt lactate dehydrogenase (encoded by ldh) with …


Preparation And Characterization Of Functionalized Heparin-Loaded Poly-Ɛ-Caprolactone Fibrous Mats To Prevent Infection With Human Papillomaviruses, Daniela Gonzalez, Jorge Ragusa, Peter C. Angeletti, Gustavo F. Larsen Jul 2018

Preparation And Characterization Of Functionalized Heparin-Loaded Poly-Ɛ-Caprolactone Fibrous Mats To Prevent Infection With Human Papillomaviruses, Daniela Gonzalez, Jorge Ragusa, Peter C. Angeletti, Gustavo F. Larsen

Department of Chemical and Biomolecular Engineering: Faculty Publications

In this study, heparin-loaded poly-ε-caprolactone (PCL) fibrous mats were prepared and characterized based on their physical, cytotoxic, thermal, and biological properties. The main objective of the work described here was to test the hypothesis that incorporation of heparin into a PCL carrier could serve as bio-compatible material capable of inhibiting Human Papillomavirus (HPV) infection. The idea of firmly anchoring heparin to capture soluble virus, vs. a slow heparin release to inhibit a virus in solution was tested. Thus, one material was produced via conventional heparin matrix encapsulation and electrohydrodynamic fiber processing in one step. A second type of material was …


Efficient One‑Step Fusion Pcr Based On Dual‑Asymmetric Primers And Two‑Step Annealing, Yilan Liu, Jinjin Chen, Anders Thygesen Jan 2018

Efficient One‑Step Fusion Pcr Based On Dual‑Asymmetric Primers And Two‑Step Annealing, Yilan Liu, Jinjin Chen, Anders Thygesen

Department of Chemical and Biomolecular Engineering: Faculty Publications

Gene splicing by fusion PCR is a versatile and widely used methodology, especially in synthetic biology. We here describe a rapid method for splicing two fragments by one-round fusion PCR with a dual-asymmetric primers and two-step annealing (ODT) method. During the process, the asymmetric intermediate fragments were generated in the early stage. Thereafter, they were hybridized in the subsequent cycles to serve as template for the target full-length product. The process parameters such as primer ratio, elongation temperature and cycle numbers were optimized. In addition, the fusion products produced with this method were successfully applied in seamless genome editing. The …


Integration Of Biology, Ecology And Engineering For Sustainable Algal‑Based Biofuel And Bioproduct Biorefinery, James Allen, Serpil Unlu, Yaşar Demirel, Paul N. Black, Wayne R. Riekhof Jan 2018

Integration Of Biology, Ecology And Engineering For Sustainable Algal‑Based Biofuel And Bioproduct Biorefinery, James Allen, Serpil Unlu, Yaşar Demirel, Paul N. Black, Wayne R. Riekhof

Department of Chemical and Biomolecular Engineering: Faculty Publications

Despite years of concerted research efforts, an industrial-scale technology has yet to emerge for production and conversion of algal biomass into biofuels and bioproducts. The objective of this review is to explore the ways of possible integration of biology, ecology and engineering for sustainable large algal cultivation and biofuel production systems. Beside the costs of nutrients, such as nitrogen and phosphorous, and fresh water, upstream technologies which are not ready for commercialization both impede economic feasibility and conflict with the ecological benefits in the sector. Focusing mainly on the engineering side of chemical conversion of algae to biodiesel has also …