Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Polyethlyene Glycol Microgels To Deliver Bioactive Nerve Growth Factor, Jessica Stukel, Susan Thompson, Laurent Simon, Rebecca Willits Aug 2015

Polyethlyene Glycol Microgels To Deliver Bioactive Nerve Growth Factor, Jessica Stukel, Susan Thompson, Laurent Simon, Rebecca Willits

Rebecca K. Willits

Delivery of bioactive molecules is a critical step in fabricating materials for regenerative medicine, yet, this step is particularly challenging in hydrated scaffolds such as hydrogels. Although bulk photocrosslinked poly(ethylene glycol) (PEG) hydrogels have been used for a variety of tissue engineering applications, their capability as drug delivery scaffolds has been limited due to undesirable release profiles and reduction in bioactivity of molecules. To solve these problems, this article presents the fabrication of degradable PEG microgels, which are micron-sized spherical hydrogels, to deliver bioactive nerve growth factor (NGF). NGF release and activity was measured after encapsulation in microgels formed from …


Ultrasound-Guided Nanobubbles For Targeted Drug Delivery, Pei Yang, Pushpak Bhandari, Joseph Irudayaraj Aug 2015

Ultrasound-Guided Nanobubbles For Targeted Drug Delivery, Pei Yang, Pushpak Bhandari, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

In a large number of biological and environmental applications, ultrasound (US)-powered micro- and nano-motors have attracted considerable attention. However, their applications in biological settings have been limited due to the incompatibility of metallic motors and the lack of precision guiding. Here, we demonstrate that cellulosic polymer nanobubbles (200-800nm) can be propelled, aligned, accelerated, and assembled in solution using Doppler ultrasound beam (DUB) and simultaneously imaged using low-frequency ultrasound. Results show that by utilizing Doppler ultrasound beam (DUB), nanobubbles accumulation at a pre-determined site can be enhanced. Moreover, bubbles’ trajectory and velocity can be also be manipulated. Related parameters associated with …


Design And Development Of Two Component Hydrogel Ejector For Three-Dimensional Cell Growth, Thomas Dunkle, Jessica Deschamps, Connie Dam May 2015

Design And Development Of Two Component Hydrogel Ejector For Three-Dimensional Cell Growth, Thomas Dunkle, Jessica Deschamps, Connie Dam

Honors Scholar Theses

Hydrogels are useful in wound healing, drug delivery, and tissue engineering applications, but the available methods of injecting them quickly and noninvasively are limited. The medical industry does not yet have access to an all-purpose device that can quickly synthesize hydrogels of different shapes and sizes. Many synthesis procedures that have been developed result in the formation of amorphous hydrogels. While generally useful, amorphous hydrogels exhibit limited capability in tissue engineering applications, especially due to their viscous properties. This endeavor aims to modulate the appropriate gelation parameters, optimize the injection process, and create a prototype that allows for the extrusion …


Layered, Flexible Drug Delivery Films For The Prevention Of Fibrotic Scar Tissue Formation, Cheryl L. Rabek Jan 2015

Layered, Flexible Drug Delivery Films For The Prevention Of Fibrotic Scar Tissue Formation, Cheryl L. Rabek

Theses and Dissertations--Biomedical Engineering

Open wounds account for about 50% of military injuries and 10% of non‐fatal traffic injuries. Scar tissue formation in these wounds may be reduced or prevented if treated with a combination of molecules whose release is tuned to the healing phases. The goal of this research was to develop flexible, layered drug delivery films for sequential, localized release of anti‐inflammatory, anti‐oxidant, and anti‐fibrotic molecules to soft tissue.

Films were composed of cellulose acetate phthalate (CAP) and Pluronic F‐127 (Pluronic). To impart flexibility, plasticizers, triethyl citrate (TEC) or tributyl citrate (TBC), were added. Mechanical analysis was performed on films as prepared …


Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam Jan 2015

Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam

Theses and Dissertations--Chemical and Materials Engineering

Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated …


A Local, Sustained Delivery System For Zoledronic Acid And Rankl-Inhibitory Antibody As A Potential Treatment For Metastatic Bone Disease, Rohith Jayaram Jan 2015

A Local, Sustained Delivery System For Zoledronic Acid And Rankl-Inhibitory Antibody As A Potential Treatment For Metastatic Bone Disease, Rohith Jayaram

Theses and Dissertations--Biomedical Engineering

Cancerous solid tumors can migrate and lead to metastatic bone disease. Drugs prescribed to reduce bone resorption from metastasis, such as zoledronic acid and the RANKL-inhibitory antibody Denosumab, cause side effects such as osteonecrosis of the jaw when delivered systemically. This project used two biocompatible materials, acrylic bone cement (PMMA) and poly(lactic-co-glycolic acid) (PLGA), to incorporate and sustain release of anti-resorptive agents. Results showed similar mechanical properties for acrylic bone cements loaded up to 6.6% drug by weight. Results showed sustained zoledronic acid release for 8 weeks from both systems, with PMMA releasing up to 22% of loaded drug and …