Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2013

PDF

Chemical Engineering

Institution
Keyword
Publication
Publication Type

Articles 1 - 29 of 29

Full-Text Articles in Biomedical Engineering and Bioengineering

Production Of Lignin-Based Phenolic Resins Using De-Polymerized Kraft Lignin And Process Optimization, Homaira Siddiqui Dec 2013

Production Of Lignin-Based Phenolic Resins Using De-Polymerized Kraft Lignin And Process Optimization, Homaira Siddiqui

Electronic Thesis and Dissertation Repository

Commercialization of Lignin-based phenol formaldehyde resins (LPF) has been limited due to the increase in curing temperatures and decrease in adhesive strength of LPF compared to conventional phenolic resins. Lignin depolymerization can increase the reactivity of lignin; however, the effect of lignin molecular weight on curing performance of LPF resins has yet to be investigated. This research work examined the optimization of synthesis parameters including percent substitution of phenol with lignin, formaldehyde- to-phenol ratio (F/P), and Mw of lignin to reduce the curing temperature and increase the adhesive strength of LPF. DSC analysis indicated that lignin with Mw ~1200g/mol resulted …


Characteristics Of Glass Ionomer Cements Composed Of Glass Powders In Cao-Sro-Zno-Sio2 System Prepared By Two Different Synthetic Routes, Ill Yong Kim, Chikara Ohtsuki, Aisling Coughlan, Lana Placek, Anthony W. Wren, Mark R. Towler Dec 2013

Characteristics Of Glass Ionomer Cements Composed Of Glass Powders In Cao-Sro-Zno-Sio2 System Prepared By Two Different Synthetic Routes, Ill Yong Kim, Chikara Ohtsuki, Aisling Coughlan, Lana Placek, Anthony W. Wren, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Glass ionomer cements (GICs) are composed of an acid degradable glass, polyacrylic acid and water. Sol-gel processing to prepare the glass phase has certain advantages, such as the ability to employ lower synthesis temperatures than melt quenching and glasses that are reported to have higher purity. A previous study reported the effects of glass synthesis route on GIC fabrication. However, in that study, the sol-gel derived glass exhibited a reduced concentration of cations. This study investigates increasing the cation content of a sol-gel derived glass, 12CaO·4SrO·36ZnO·48SiO2 (molar ratio) by heating before aging to reduce dissolution of cations. This glass …


Gallium Containing Glass Polyalkenoate Bone Cements: Ion Release And E. Coli Inhibition, L. Placek, A. W. Wren, A. Coughlan, Mark R. Towler Nov 2013

Gallium Containing Glass Polyalkenoate Bone Cements: Ion Release And E. Coli Inhibition, L. Placek, A. W. Wren, A. Coughlan, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

The Glass Polyalkenoate Cement (GPC) series (LCon., LGa-1 and LGa-2) containing gallium (Ga) and a 50 wt% addition of E11 polyacrylic acid (PAA), previously developed, was evaluated for ion release, specifically Si, Ca, Zn and Ga, and E. coli inhibition. The maximum inhibition was observed in the t = 0 samples and was 0.35 mm for LCon. and 0.65 mm for LGa-1 and LGa-2. © 2013 IEEE.


Biocompatibility Of Cao-Na2o-Sio2/Tio2 Glass Ceramic Scaffolds For Orthopaedic Applications, A. W. Wren, A. Coughlan, K. E. Smale, S. T. Misture, B. P. Mahon, O. M. Clarkin, Mark R. Towler Nov 2013

Biocompatibility Of Cao-Na2o-Sio2/Tio2 Glass Ceramic Scaffolds For Orthopaedic Applications, A. W. Wren, A. Coughlan, K. E. Smale, S. T. Misture, B. P. Mahon, O. M. Clarkin, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

This work aims to determine the effect of substituting TiO2 for SiO2 in a 0.62SiO2-Na2O-0.24CaO based glass-ceramic scaffold. High temperature X-ray Diffraction (HT-XRD) was used to determine the sintering temperature (700oC). Both optical microscopy and x-ray micotomography was used to determine the average pore size (540-680ìm) of each scaffold. Cytocompatibility of each scaffold was conducted using murine mesenchymal stem cells. © 2013 IEEE.


Relating Ph And Ion Release From Ga2o3-Na 2o-Cao-Zno-Sio2 Bioactive Glasses, T. J. Keenan, A. W. Wren, A. Coughlan, Mark R. Towler, M. M. Hall Nov 2013

Relating Ph And Ion Release From Ga2o3-Na 2o-Cao-Zno-Sio2 Bioactive Glasses, T. J. Keenan, A. W. Wren, A. Coughlan, Mark R. Towler, M. M. Hall

Chemical and Biochemical Engineering Faculty Research & Creative Works

Three glasses were designed for this study, including one Ga-free glass (Control), and two Ga-containing glasses (TGa-1, TGa-2). In the Ga-containing glasses, Ga2O3 is included at the expense of ZnO. This study focuses on the relation between pH and ion concentration present in solution in which these bioactive glasses have been submerged for periods of 1, 7, and 14 days. © 2013 IEEE.


An Investigation Into The Structure And Properties Of Cao-Zno-Sio 2-Tio2-Na2o Bioactive Glass/Hydroxyapatite Composite, Chokchai Yatongchai, Mark R. Towler, Anthony W. Wren Nov 2013

An Investigation Into The Structure And Properties Of Cao-Zno-Sio 2-Tio2-Na2o Bioactive Glass/Hydroxyapatite Composite, Chokchai Yatongchai, Mark R. Towler, Anthony W. Wren

Chemical and Biochemical Engineering Faculty Research & Creative Works

Effect of the addition of CaO-ZnO-SiO2-TiO2-Na2O glass as a reinforcing phase on properties of hydroxyapatite/glass composites was investigated. The addition of the glass caused the decomposition of HA phase to tricalcium phosphate, inhibiting densification in the HA/glass composites. However, depending on the glass concentration, some of the glass can act as a sintering aid enhancing the densification in the composites. © 2013 IEEE.


Physiological Fluid Specific Agglomeration Patterns Diminish Gold Nanorod Photothermal Characteristics, Kristen K. Comfort, Jared W. Speltz, Bradley M. Stacy, Larry R. Dosser, Saber M. Hussain Nov 2013

Physiological Fluid Specific Agglomeration Patterns Diminish Gold Nanorod Photothermal Characteristics, Kristen K. Comfort, Jared W. Speltz, Bradley M. Stacy, Larry R. Dosser, Saber M. Hussain

Chemical and Materials Engineering Faculty Publications

Investigations into the use of gold nanorods (Au-NRs) for biological applications are growing exponentially due to their distinctive physicochemical properties, which make them advantageous over other nanomaterials. Au-NRs are particularly renowned for their plasmonic characteristics, which generate a robust photothermal response when stimulated with light at a wavelength matching their surface plasmon resonance. Numerous reports have explored this nanophotonic phenomenon for temperature driven therapies; however, to date there is a significant knowledge gap pertaining to the kinetic heating profile of Au-NRs within a controlled physiological setting. In the present study, the impact of environmental composition on Au-NR behavior and degree …


Adhesive Elastomeric Proteins, Haefa Mansour, Julie Liu Oct 2013

Adhesive Elastomeric Proteins, Haefa Mansour, Julie Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Sutures and staples commonly used to close surgical wounds tend to be much stiffer than the surrounding tissue, often resulting in external tissue damage. Surgical adhesives provide a promising alternative to these sutures and staples. Ideal surgical adhesives are biocompatible, able to set well and remain sticky in moist conditions, possess strong adhesive and cohesive properties, and exhibit mechanical properties that mimic those of the surrounding tissue. Unfortunately, the adhesives available today are unable to satisfactorily meet all of these criteria. We are utilizing protein engineering techniques to design, create, and test a new surgical adhesive that combines the adhesive …


Characterization Of The Saturation Level Of Nucleosome Arrays And Plasmids By Mnase Digestion, Wenjie Liu, Nathan Nurse, Chongli Yuan Oct 2013

Characterization Of The Saturation Level Of Nucleosome Arrays And Plasmids By Mnase Digestion, Wenjie Liu, Nathan Nurse, Chongli Yuan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Studying processes involving DNA such as DNA replication and transcription is best done in the context of chromatin because the structure of DNA influences the efficiency of such processes. Chromatin structure is derived from DNA wrapping around histone octamers with the histone octamer density termed saturation level. For in vitro studies on DNA replication and transcription, it is important to maintain a constant saturation level so that saturation level can be removed as a variable. Our goal is to characterize the saturation level of plasmids using the rate of MNase digestion. MNase digestions were first performed on reconstituted nucleosome arrays …


Discriminatory Bio-Adhesion Over Nano-Patterned Polymer Brushes, Saugata Gon Sep 2013

Discriminatory Bio-Adhesion Over Nano-Patterned Polymer Brushes, Saugata Gon

Open Access Dissertations

Surfaces functionalized with bio-molecular targeting agents are conventionally used for highly-specific protein and cell adhesion. This thesis explores an alternative approach: Small non-biological adhesive elements are placed on a surface randomly, with the rest of the surface rendered repulsive towards biomolecules and cells. While the adhesive elements themselves, for instance in solution, typically exhibit no selectivity for various compounds within an analyte suspension, selective adhesion of targeted objects or molecules results from their placement on the repulsive surface. The mechanism of selectivity relies on recognition of length scales of the surface distribution of adhesive elements relative to species in the …


Comparison Of A Sio2-Cao-Zno-Sro Glass Polyalkenoate Cement To Commercial Dental Materials: Ion Release, Biocompatibility And Antibacterial Properties, A. W. Wren, A. Coughlan, M. M. Hall, M. J. German, Mark R. Towler Sep 2013

Comparison Of A Sio2-Cao-Zno-Sro Glass Polyalkenoate Cement To Commercial Dental Materials: Ion Release, Biocompatibility And Antibacterial Properties, A. W. Wren, A. Coughlan, M. M. Hall, M. J. German, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Ion Release and biocompatibility of a CaO-SrO-ZnO-SiO2 (BT 101) based glass polyalkenoate cement (GPC) was compared against commercial GPCs, Fuji IX and Ketac Molar. The radiopacity (R) was similar for each material, 2.0-2.8. Ion release was evaluated on each material over 1, 7, 30 and 90 days. BT 101 release included Ca (23 mg/L), Sr (23 mg/L) Zn (13 mg/L), Si (203 mg/L). Fuji IX release includes Ca (0.7 mg/L), Al (3 mg/L) Si (26 mg/L), Na (60 mg/L) and P (0.5 mg/L) while Ketac Molar release includes Ca (1 mg/L), Al (0.6 mg/L) Si (23 mg/L), Na (76 …


Effect Of Plant Hormones On The Production Of Biomass And Lipid In Microalgae, Malihe Mehdizadeh Allaf Aug 2013

Effect Of Plant Hormones On The Production Of Biomass And Lipid In Microalgae, Malihe Mehdizadeh Allaf

Electronic Thesis and Dissertation Repository

Limited fossil fuel reserves, increasing demand for energy in all parts of the world are some driving forces to look for new sources of transportation fuels. Among different options available, microalgae are currently attracting wide interests as an alternative and renewable fuel source.

Microalgae are single cell photosynthetic organisms that are known for rapid growth and high energy content and as a part of photosynthesis; they produce oil that can be used as a feedstock for biodiesel production. Some algae strains could contain lipid up to 80% of the dry biomass. The amount of lipid production is in direct relation …


Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li Aug 2013

Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li

Electronic Thesis and Dissertation Repository

In tissue engineering, the scaffold plays a critical role in guiding and supporting cells to function and grow optimally. The electrospun nanofibrous scaffold can serve as a near ideal substrate for tissue engineering because it has high surface area and the three-dimensional interconnected porous network can enhance cell attachment and proliferation. Core-shell nanofibrous scaffolds produced with coaxial electrospinning allow bioactive molecule encapsulation to improve cell adhesion, mediate and promote the proper signaling among the cells for their functioning and growth. In the current study, core-shell collagen nanofibers were fabricated via coaxial electrospinning with horizontal and vertical configurations. Core-shell nanofibers with …


Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec Jun 2013

Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec

Electronic Thesis and Dissertation Repository

Biomaterials can be used in a wide variety of medical applications owing to their breadth of characteristics that can be imparted by varying their chemical structures. Butyl rubber (IIR), which is a copolymer of isobutylene (IB) and small percentages of isoprene (IP), is particularly attractive as a biomaterial because of its elastomeric mechanical properties, biocompatibility, impermeability and high damping characteristics. IIR is typically vulcanized through chemical-based crosslinking mechanisms. However, these methods are not acceptable for biological applications. This thesis focuses on the synthesis of IIR-polyester graft copolymers by grafting biodegradable and biocompatible polyesters including poly(caprolactone) (PCL) and poly(d,l-lactide) (PDLLA) to …


Materials Education And Research In Art And Design: A New Role For Libraries (Website), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Website), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Program Sheet), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Program Sheet), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Program Booklet), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Program Booklet), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Survey Stats), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Survey Stats), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Collection Creation And Administration: A New Role For Libraries (White Paper), Mark Pompelia Jun 2013

Materials Collection Creation And Administration: A New Role For Libraries (White Paper), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

The Problem/Opportunity: To define, identify, and guide design-based materials collections in academic settings and foster community among those with existing collections and/or those considering creating and supporting one.

Contents and topics:

  1. What is a materials collection?
  2. Why have a materials collection?
  3. Acquisition strategies
  4. Organizational approaches
  5. Programming possibilities
  6. Symposium summary
  7. Resources


Characterisation Of Ga2o3-Na2o-Cao-Zno- Sio2 Bioactive Glasses, A. W. Wren, T. Keenan, A. Coughlan, F. R. Laffir, D. Boyd, Mark R. Towler, M. M. Hall Jun 2013

Characterisation Of Ga2o3-Na2o-Cao-Zno- Sio2 Bioactive Glasses, A. W. Wren, T. Keenan, A. Coughlan, F. R. Laffir, D. Boyd, Mark R. Towler, M. M. Hall

Chemical and Biochemical Engineering Faculty Research & Creative Works

The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO2-0.40-xZnO-0.10Na2O-0.08CaO glass series, (where x = 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series (Control 1.23, TGa-1 2.32 and TGa-2 3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift …


Aluminium-Free Glass Polyalkenoate Cements: Ion Release And In Vitro Antibacterial Efficacy, A. W. Wren, J. P. Hansen, S. Hayakawa, Mark R. Towler May 2013

Aluminium-Free Glass Polyalkenoate Cements: Ion Release And In Vitro Antibacterial Efficacy, A. W. Wren, J. P. Hansen, S. Hayakawa, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Glass polyalkenoate cements (GPCs) have exhibited potential as bone cements. This study investigates the effect of substituting TiO2 for SiO2 in the glass phase and the subsequent effect on cement rheology, mechanical properties, ion release and antibacterial properties. Glass characterization revealed a reduction in glass transition temperature (Tg) from 685 to 669 C with the addition of 6 mol % TiO2 (AT-2). Magic angle spinning nuclear magnetic resonance (MAS-NMR) revealed a shift from -81 ppm to -76pmm when comparing a Control glass to AT-2, indicating de-polymerization of the Si network. The incorporation of TiO2 …


Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo Apr 2013

Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo

Electronic Thesis and Dissertation Repository

Treatments of bone injuries and defects have been largely centered on replacing the lost bone with tissues of allogeneic or xenogeneic sources as well as synthetic bone substitutes, which in all lead to limited degree of structural and functional recovery. As a result, tissue engineering has emerged as a viable technology to regenerate the structures and therefore recover the functions of bone tissue rather than replacement alone. Hence, the current strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate and function.

In this …


Picture Of A Chelate In Exchange: The Crystal Structure Of Nahodotma, A 'Semi'-Hydrated Chelate, Katherine M. Payne, Edward J. Valente, Silvio Aime, Mauro Botta, Mark Woods Feb 2013

Picture Of A Chelate In Exchange: The Crystal Structure Of Nahodotma, A 'Semi'-Hydrated Chelate, Katherine M. Payne, Edward J. Valente, Silvio Aime, Mauro Botta, Mark Woods

Chemistry Faculty Publications and Presentations

Crystallography generally only provides static structural information. This can render it an ineffective technique for probing dynamic solution state processes. A crystal of HoDOTMA affords unique structures that effectively represent that of a lanthanide tetra-acetate chelate mid-way through the water exchange process.


Comparison Of A Sio2-Cao-Zno-Sro Glass Polyalkenoate Cement To Commercial Dental Materials: Glass Structure And Physical Properties, A. W. Wren, A. Coughlan, F. R. Laffir, Mark R. Towler Feb 2013

Comparison Of A Sio2-Cao-Zno-Sro Glass Polyalkenoate Cement To Commercial Dental Materials: Glass Structure And Physical Properties, A. W. Wren, A. Coughlan, F. R. Laffir, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Glass polyalkenoate cements (GPCs) have previously been considered for orthopedic applications. A Zn-GPC (BT 101) was compared to commercial GPCs (Fuji IX and Ketac Molar) which have a setting chemistry analogous to BT 101. Handling properties (working, Tw and setting, Ts times) for BT 101 were shorter than the commercial GPCs. BT 101 also had a higher setting exotherm (Sx - 34 °C) than the commercial GPCs (29 °C). The maximum strengths for BT 101, Fuji IX, and Ketac Molar were 75, 238, and 216 MPa (compressive, σc), and 34, 54, and 62 MPa (biaxial …


Developing Electrochemical Biosensors For Point-Of-Care Diagnostics Of Cardiovascular Biomarkers, Yang Cheng Jan 2013

Developing Electrochemical Biosensors For Point-Of-Care Diagnostics Of Cardiovascular Biomarkers, Yang Cheng

Electronic Thesis and Dissertation Repository

Troponin is known as a type of reliable biomarker for the detection of cardiac disorders. Cardiac troponin I (cTnI), as a subunit of troponin, is highly sensitive to cardiac injury; therefore, the cTnI level is used as an index to diagnose myocardial damage, particularly acute myocardial infarction. It can be also used in cardiospecific diagnosis, risk stratification therapeutic treatment and post risk management. In this research, an amperometric immunosensor was developed based on planar electrode and sandwich ELISA format. The electrical response corresponding to biological information was obtained via four main procedures, including electrode modification, immunoreaction, signal amplifications and amperometric …


How Atomic Level Interactions Drive Membrane Fusion: Insights From Molecular Dynamics Simulations, Navendu Bhatnagar Jan 2013

How Atomic Level Interactions Drive Membrane Fusion: Insights From Molecular Dynamics Simulations, Navendu Bhatnagar

Wayne State University Dissertations

This project is focused on identifying the role of key players in the membrane fusion process at the atomic level with the use of molecular dynamics simulations. Membrane fusion of apposed bilayers is one of the most fundamental and frequently occurring biological phenomena in living organisms. It is an essential step in several cellular processes such as neuronal exocytosis, sperm fusion with oocytes and intracellular fusion of organelles to name a few. Membrane fusion is a frequent process in a living organism but is still not fully understood at the atomic level in terms of the role of various factors …


Structured Materials For Catalytic And Sensing Applications, Selma Hokenek Jan 2013

Structured Materials For Catalytic And Sensing Applications, Selma Hokenek

USF Tampa Graduate Theses and Dissertations

The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts …


Microfluidic Devices Applied On Enriching Post –Translational Modified Proteins For Proteomics, Hui Xia Jan 2013

Microfluidic Devices Applied On Enriching Post –Translational Modified Proteins For Proteomics, Hui Xia

Doctoral Dissertations

In this work, microfluidic devices were developed for enriching post-translational modified proteins. Post-translational modifications (PTM) of proteins play essential roles in cellular physiology and disease. The identification of protein substrates and detection of modification site helps understand PTM-mediated regulation in essential biological pathways and functions in various diseases. However, PTM proteins are typically present only at trace levels, making them difficult to identify in mass spectrometry based proteomics. This work study is about the design, fabrication and testing of the microfluidic device for the enrichment of abundant amount of PTMs. Carbonylated protein is used as a representative PTM to illustrate …


Applications Of Antioxidant And Anti-Inflammatory Polymers To Inhibit Injury And Disease, David B. Cochran Jan 2013

Applications Of Antioxidant And Anti-Inflammatory Polymers To Inhibit Injury And Disease, David B. Cochran

Theses and Dissertations--Chemical and Materials Engineering

There is an undeniable link between oxidative stress, inflammation, and disease. Currently, approaches using antioxidant therapies have been largely unsuccessful due to poor delivery and bioavailability. Responding to these limitations, we have developed classes of polymer and delivery systems that can overcome the challenges of antioxidant and anti-inflammatory therapy. In our initial studies, nanoparticles of poly(trolox), a polymeric form of trolox, were surface-modified with antibodies. This modification allows for specific targeting to endothelial cells, affording controllable and localized protection against oxidative stress. We have shown these targeted nanoparticles bind, internalize, and provide protection against oxidative stress generation and cytotoxicity from …