Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Measuring The Mechanical Properties Of Living Cells Using Atomic Force Microscopy, Nancy Burnham, Gawain Thomas, Terri Camesano, Qi Wen Jun 2013

Measuring The Mechanical Properties Of Living Cells Using Atomic Force Microscopy, Nancy Burnham, Gawain Thomas, Terri Camesano, Qi Wen

Nancy A. Burnham

Mechanical properties of cells and extracellular matrix (ECM) play important roles in many biological processes including stem cell differentiation, tumor formation, and wound healing. Changes in stiffness of cells and ECM are often signs of changes in cell physiology or diseases in tissues. Hence, cell stiffness is an index to evaluate the status of cell cultures. Among the multitude of methods applied to measure the stiffness of cells and tissues, micro-indentation using an Atomic Force Microscope (AFM) provides a way to reliably measure the stiffness of living cells. This method has been widely applied to characterize the micro-scale stiffness for ...


Smet: Systematic Multiple Enzyme Targeting–A Method To Rationally Design Optimal Strains For Target Chemical Overproduction, David Flowers, Adam Thompson, Douglas Birdwell, Tsewei Wang, Cong Trinh Dec 2012

Smet: Systematic Multiple Enzyme Targeting–A Method To Rationally Design Optimal Strains For Target Chemical Overproduction, David Flowers, Adam Thompson, Douglas Birdwell, Tsewei Wang, Cong Trinh

Cong T Trinh

Identifying multiple enzyme targets for metabolic engineering is very critical for redirecting cellular metabolism to achieve desirable phenotypes, e.g., overproduction of a target chemical. The challenge is to determine which enzymes and how much of these enzymes should be manipulated by adding, deleting, under-, and/or over-expressing associated genes. In this study, we report the development of a systematic multiple enzyme targeting method (SMET), to rationally design optimal strains for target chemical overproduction. The SMET method combines both elementary mode analysis and ensemble metabolic modeling to derive SMET metrics including l-values and c-values that can identify rate-limiting reaction steps ...