Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2013

Other Biomedical Engineering and Bioengineering

PDF

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 30

Full-Text Articles in Biomedical Engineering and Bioengineering

Analysis, Segmentation And Prediction Of Knee Cartilage Using Statistical Shape Models, Joseph Michael Johnson Dec 2013

Analysis, Segmentation And Prediction Of Knee Cartilage Using Statistical Shape Models, Joseph Michael Johnson

Doctoral Dissertations

Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability (along with the hip). Due to rising healthcare costs associated with OA, it is important to fully understand the disease and how it progresses in the knee. One symptom of knee OA is the degeneration of cartilage in the articulating knee. The cartilage pad plays a major role in painting the biomechanical picture of the knee. This work attempts to quantify the cartilage thickness of healthy male and female knees using statistical shape models (SSMs) for a deep knee bend activity. Additionally, novel cartilage segmentation from …


Reconstruction Of Patient-Specific Bone Models From X-Ray Radiography, Hatem Amin Abdel Fattah El Dakhakhni Dec 2013

Reconstruction Of Patient-Specific Bone Models From X-Ray Radiography, Hatem Amin Abdel Fattah El Dakhakhni

Doctoral Dissertations

The availability of a patient‐specific bone model has become an increasingly invaluable addition to orthopedic case evaluation and planning [1]. Utilized within a wide range of specialized visualization and analysis tools, such models provide unprecedented wealth of bone shape information previously unattainable using traditional radiographic imaging [2]. In this work, a novel bone reconstruction method from two or more x‐ray images is described. This method is superior to previous attempts in terms of accuracy and repeatability. The new technique accurately models the radiological scene in a way that eliminates the need for expensive multi‐planar radiographic imaging systems. It is also …


Automated Fragmentary Bone Matching, Ali Saad Mustafa Dec 2013

Automated Fragmentary Bone Matching, Ali Saad Mustafa

Masters Theses

Identification, reconstruction and matching of fragmentary bones are basic tasks required to accomplish quantification and analysis of fragmentary human remains derived from forensic contexts. Appropriate techniques for three-dimensional surface matching have received great attention in computer vision literature, and various methods have been proposed for matching fragmentary meshes; however, many of these methods lack automation, speed and/or suffer from high sensitivity to noise. In addition, reconstruction of fragementary bones along with identification in the presence of reference model to compare with in an automatic scheme have not been addressed. In order to address these issues, we used a multi-stage technique …


Mechanical Properties Of Bone Due To Sost Expression: Nanoindentation Assessment Of Murine Femurs, Amir Rafie Dec 2013

Mechanical Properties Of Bone Due To Sost Expression: Nanoindentation Assessment Of Murine Femurs, Amir Rafie

Master's Theses

In the human genome, the SOST gene codes for a protein sclerostin. Sclerostin is an osteocyte-expressed negative regulator of bone formation. When the SOST gene is not coded, bone formation is reduced in individuals during skeletal maturation. This study utilizes nanoindentation methods to test for the mechanical properties of bones that both express and do not express the SOST gene. 100 transgenic murine femurs were obtained from Lawrence Livermore Labs in the form of 6 and 8 month SOST transgenic mice, 6 and 12 month SOST knockout mice, and wild type control littermates for each of the 4 age groups. …


Physiological Fluid Specific Agglomeration Patterns Diminish Gold Nanorod Photothermal Characteristics, Kristen K. Comfort, Jared W. Speltz, Bradley M. Stacy, Larry R. Dosser, Saber M. Hussain Nov 2013

Physiological Fluid Specific Agglomeration Patterns Diminish Gold Nanorod Photothermal Characteristics, Kristen K. Comfort, Jared W. Speltz, Bradley M. Stacy, Larry R. Dosser, Saber M. Hussain

Chemical and Materials Engineering Faculty Publications

Investigations into the use of gold nanorods (Au-NRs) for biological applications are growing exponentially due to their distinctive physicochemical properties, which make them advantageous over other nanomaterials. Au-NRs are particularly renowned for their plasmonic characteristics, which generate a robust photothermal response when stimulated with light at a wavelength matching their surface plasmon resonance. Numerous reports have explored this nanophotonic phenomenon for temperature driven therapies; however, to date there is a significant knowledge gap pertaining to the kinetic heating profile of Au-NRs within a controlled physiological setting. In the present study, the impact of environmental composition on Au-NR behavior and degree …


In Vivo Method For Labeling And Tracking Cells In The Mammalian Limb Bud, James T. Mccarthy, Andrew Schilb, Sarah Calve Oct 2013

In Vivo Method For Labeling And Tracking Cells In The Mammalian Limb Bud, James T. Mccarthy, Andrew Schilb, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

The extracellular matrix (ECM) is composed of many different proteins excreted by cells and is believed to play a very important role in development as well as regeneration and wound healing. In this research, a method to determine the ECM’s effect on the migration of muscle progenitor cells into the mammalian limb bud was investigated. It has traditionally been difficult to obtain in vivo images of the limb bud, due to the difficulty of maintaining embryos in culture and limitations of imaging techniques. In this study, we have worked on optimizing the culture conditions to allow growth of mouse embryos …


The Effects Of Exogenous Extracellular Matrix And Substrate Stiffness On Mouse Tendon Cells In Vitro, Caleb J. Mcdaniel, Sarah Calve Oct 2013

The Effects Of Exogenous Extracellular Matrix And Substrate Stiffness On Mouse Tendon Cells In Vitro, Caleb J. Mcdaniel, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

To improve the treatment of musculoskeletal injuries, a better understanding of the transitional environment in which progenitor cells form mature musculoskeletal constructs is necessary. This need arises because injury repair requires restructuring of tissue, similar to the initial tissue construction that occurs during embryonic development by progenitor cells. Differences in both the biochemical and mechanical environments between a transitional and a differentiated state are known to take place, but how these differences affect cell behavior had not yet been characterized in mammalian tendon cells. In order to investigate this, we have determined the effects of exogenous extracellular matrix and the …


Sequential Structural And Fluid Dynamics Analysis Of Balloon-Expandable Coronary Stents., David Martin Oct 2013

Sequential Structural And Fluid Dynamics Analysis Of Balloon-Expandable Coronary Stents., David Martin

Doctoral

As in-stent restenosis following coronary stent deployment has been strongly linked with stent-induced arterial injury and altered vessel hemodynamics, the sequential numerical analysis of the mechanical and hemodynamic impact of stent deployment within a coronary artery is likely to provide an excellent indication of coronary stent performance. Despite this observation, very few numerical studies have considered both the mechanical and hemodynamic impact of stent deployment. In light of this observation, the aim of this research is to develop a robust numerical methodology for investigating the performance of balloon-expandable coronary stents in terms of their mechanical and hemodynamic impact within a …


Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey Oct 2013

Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey

Doctoral Dissertations

Currently, the most commonly used treatments for cancerous tumors (chemotherapy, radiation, etc.) have almost no method of monitoring the administration of the treatment for adverse effects in real time. Without any real time feedback or control, treatment becomes a "guess and check" method with no way of predicting the effects of the drugs based on the actual bioavailability to the patient's body. One particular drug may be effective for one patient, yet provide no benefit to another. Doctors and scientists do not routinely attempt to quantifiably explain this discrepancy. In this work, mathematical modeling and analysis techniques are joined together …


Halloysite Nanotube Composites For Sustained Release Of Antimocrobial Agents (Antiseptics And Antibiotics), Wenbo Wei Oct 2013

Halloysite Nanotube Composites For Sustained Release Of Antimocrobial Agents (Antiseptics And Antibiotics), Wenbo Wei

Doctoral Dissertations

Encapsulation of antimicrobial agents (simple antiseptics and more specific antibiotics) within micro-scale and nano-scale containers may provide prolonged and more evenly distributed drug release. One of such containers proposed at Louisiana Tech is natural halloysite clay nanotubes. Halloysite is an aluminosilicate tube with a length of approximately 1 µm, outer diameter of approximately 50 nm, and internal lumen of 15 nm. The chemical composition of halloysite is similar to more common clay–kaolinite, and it can be described as rolled sheets of kaolinite. Halloysite, loaded with drugs inside its lumen, has shown aqueous release of the loaded chemicals over 10-20 hours …


Bionano Electronics: Magneto-Electric Nanoparticles For Drug Delivery, Brain Stimulation And Imaging Applications, Rakesh Guduru Sep 2013

Bionano Electronics: Magneto-Electric Nanoparticles For Drug Delivery, Brain Stimulation And Imaging Applications, Rakesh Guduru

FIU Electronic Theses and Dissertations

Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) …


Automated Segmentation Of Left And Right Ventricles In Mri And Classification Of The Myocarfium Abnormalities, Cyrus (Mohammad Saleh) Nambakhsh Sep 2013

Automated Segmentation Of Left And Right Ventricles In Mri And Classification Of The Myocarfium Abnormalities, Cyrus (Mohammad Saleh) Nambakhsh

Electronic Thesis and Dissertation Repository

A fundamental step in diagnosis of cardiovascular diseases, automated left and right ventricle (LV and RV) segmentation in cardiac magnetic resonance images (MRI) is still acknowledged to be a difficult problem. Although algorithms for LV segmentation do exist, they require either extensive training or intensive user inputs. RV segmentation in MRI has yet to be solved and is still acknowledged a completely unsolved problem because its shape is not symmetric and circular, its deformations are complex and varies extensively over the cardiac phases, and it includes papillary muscles. In this thesis, I investigate fast detection of the LV endo- and …


An Analysis Of Eliminating Electroosmotic Flow In A Microfluidic Pdms Chip, Cecile D. Redington Sep 2013

An Analysis Of Eliminating Electroosmotic Flow In A Microfluidic Pdms Chip, Cecile D. Redington

Master's Theses

The goal of this project is to eliminate electroosmotic flow (EOF) in a microfluidic chip. EOF is a naturally occurring phenomenon at the fluid-surface interface in microfluidic chips when an electric field is applied across the fluid. When isoelectric focusing (IEF) is carried out to separate proteins based on their surface charge, the analytes must remain in the separation chamber, and not migrate to adjacent features in the microfluidic chip, which happens with EOF.

For this project, a microfluidic chip was designed and commissioned to be photolithographically transferred onto a Si wafer. A PDMS component was then casted on the …


Development And Assessment Of An Impact Apparatus And High-Speed Camera Motion Tracking System To Quantify The Effect Of Static Muscle Loads On Fracture Threshold Measures In The Distal Radius, Jacob M. Reeves Aug 2013

Development And Assessment Of An Impact Apparatus And High-Speed Camera Motion Tracking System To Quantify The Effect Of Static Muscle Loads On Fracture Threshold Measures In The Distal Radius, Jacob M. Reeves

Electronic Thesis and Dissertation Repository

Distal radius fractures are prevalent, debilitating, and costly. This thesis conducts an in vitro investigation of these injuries, examining the role of static muscle loading on fracture threshold measures (i.e., force, impulse, energy). Initially, an impact apparatus and custom LabVIEW colour-thresholding program were designed and assessed for repeatability and accuracy in quantifying fracture measures and impact kinematics. These tools were then used to test six pairs of cadaveric forearms, with static muscle loads simulated in one specimen from each pair. Distal radius fractures were achieved in 5 pairs, with perilunate dislocations in the remaining pair. None of the …


Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li Aug 2013

Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li

Electronic Thesis and Dissertation Repository

In tissue engineering, the scaffold plays a critical role in guiding and supporting cells to function and grow optimally. The electrospun nanofibrous scaffold can serve as a near ideal substrate for tissue engineering because it has high surface area and the three-dimensional interconnected porous network can enhance cell attachment and proliferation. Core-shell nanofibrous scaffolds produced with coaxial electrospinning allow bioactive molecule encapsulation to improve cell adhesion, mediate and promote the proper signaling among the cells for their functioning and growth. In the current study, core-shell collagen nanofibers were fabricated via coaxial electrospinning with horizontal and vertical configurations. Core-shell nanofibers with …


Multiscale Modeling Of Toxoplasma Gondii, Adam Michael Sullivan Aug 2013

Multiscale Modeling Of Toxoplasma Gondii, Adam Michael Sullivan

Doctoral Dissertations

Toxoplasma gondii is a potentially deadly parasite that uses a very unique way of manipulating the cell and immune systems. To investigate the mechanics of how the parasite spreads within hosts, several interwoven topics related to the study of within-host dynamics of Toxoplasma gondii are presented here. Understanding the complicated methods of how the parasite grows, dies, invades, replicates, and evades the host immune response is the critical aim of this independent research. Understanding the processes of acute and chronic infection are studied independently, followed by modeling the two processes in the same model. Finally, the dynamic models are simulated …


Vascular Reactivity Of Immature Arterialized Capillaries, Sara Hellstrom Aug 2013

Vascular Reactivity Of Immature Arterialized Capillaries, Sara Hellstrom

Biomedical Engineering

Peripheral arterial occlusive disease (PAOD) is a globally prevalent cardiovascular disease in which atherosclerotic plaques narrow arterial lumen diameters and restrict blood flow to down stream tissues. The impact of these occlusions can be mitigated by collateral vessels that connect parallel arterial branches and act as natural bypasses to maintain perfusion. Some patients with PAOD may not have robust collateral networks to accommodate ischemic tissues in the event of an occlusion and, therefore, may be more susceptible to hypoxia and tissue necrosis. In animal models that lack collateral arterioles, capillaries can arterialize and form functional collaterals; however, in the early …


A Lateral Flow Smart Phone Image Analysis Diagnostic, Christina Holly Tyrrell Aug 2013

A Lateral Flow Smart Phone Image Analysis Diagnostic, Christina Holly Tyrrell

Master's Theses

A low cost compact diagnostic has many implications in today’s society. Smart phone technology has exponentially grown and with it the imaging capabilities associated with smart phones. The goals of this research are i) to determine the feasibility of combining in the field smart phone images with color dependent assay results, ii) to develop a MatLab® image analysis code to analyze these results, and iii) compare limits of detection between the un-aided eye and MatLab® image analysis software.

Orange G dye is used to create a stock solution and subsequent titers for analysis. Autocad is used to design an assay …


Fluorescence Characterization Of Quantum Dots For Use As Biomarkers, Logan M. Grimes Jun 2013

Fluorescence Characterization Of Quantum Dots For Use As Biomarkers, Logan M. Grimes

Materials Engineering

Fluorescence profiles of quantum dots (QDs) were characterized to select the ideal QDs for encapsulation in phospholipids for use as biomarkers to selectively adhere to cancer cells. QDs were synthesized and extracted 0, 30, 60, and 90 seconds after precursor compounds were mixed. These extractions were isolated by extraction time. Portions from each vial were coated in a zinc sulfide shelling procedure, leaving at least half of the QD solution unshelled. These samples were characterized over four days to monitor fluctuations in fluorescence. This was done utilizing an Ocean Optics spectrometer in conjunction with Spectra Suite software. The central wavelength, …


Guidance System, Kayaking For The Visually Impaired, D. Ryan Kirtland, Ryan Phife, William Gardner, Amy Johnson Jun 2013

Guidance System, Kayaking For The Visually Impaired, D. Ryan Kirtland, Ryan Phife, William Gardner, Amy Johnson

Biomedical Engineering

Quality Life Plus is working with Team River Runner to develop an assistive guidance system for veterans who want to remain active by kayaking, after sustaining an injury that impairs vision. This system allows these veterans to complete a slalom speed race independent of a personal guide in the water. The system incorporates 3 stations that each contain a speaker connected to a microcontroller system covered by a Pelican Case on a custom made buoy. During the slalom race, a kayaker will travel from shore towards buoy #1 as it omits sound from the speaker. As the kayaker moves around …


Design And Development Of A Stair Ascension Assistive Device For Transfemoral Amputees, Casey Michael Barbarino Jun 2013

Design And Development Of A Stair Ascension Assistive Device For Transfemoral Amputees, Casey Michael Barbarino

Master's Theses

Transfemoral amputees around the world experience increased difficulty in climbing stairs due to lack of muscle, balance, and other factors. The loss of a lower limb greatly diminishes the amount of natural force generation provided that is necessary to propel oneself up stairs. This study investigated possible solutions to the problem of stair ascension for transfemoral amputees by the means of designing and developing an externally attachable device to a prosthesis. The number of amputations from military service has greatly increased since 2008, which shows there is a clear need for assistive devices (Wenke, Krueger, & Ficke, 2012). With the …


Conserved Extracellular Cysteines Differentially Regulate The Potentiation Produced By Zn2+ In Rat P2x4 Receptors, Chao-Ying Li, Ke-Ming Xiong, Yu-Xiang Wu, Yu-Wei Liu, Lin Chen, Randall B. Stewart, Robert Peoples, Chu-Li Yi May 2013

Conserved Extracellular Cysteines Differentially Regulate The Potentiation Produced By Zn2+ In Rat P2x4 Receptors, Chao-Ying Li, Ke-Ming Xiong, Yu-Xiang Wu, Yu-Wei Liu, Lin Chen, Randall B. Stewart, Robert Peoples, Chu-Li Yi

Biomedical Sciences Faculty Research and Publications

One feature of the amino acid sequence of P2X receptors identified from mammalian species, Xenopus laevis and zebrafish is the conservation of ten cysteines in the extracellular loop. Little information is available about the role of these conserved ectodomain cysteines in the function of P2X receptors. Here, we investigated the possibility that ten conserved cysteine residues in the extracellular loop of the rat P2X4 receptor may regulate zinc potentiation of the receptor using a series of individual cysteine to alanine point mutations and functional characterization of recombinant receptors expressed in Xenopus oocytes. For the C116A, C132A, C159A, C165A, C217A and …


Intrinsic Mode Function Synchronization Measures For The Anticipation Of Seizures In Epilpsy, Daniel William Moller Apr 2013

Intrinsic Mode Function Synchronization Measures For The Anticipation Of Seizures In Epilpsy, Daniel William Moller

Doctoral Dissertations

Epileptic seizures affect as many as 50 million people and often occur without warning or apparent provocation. We explore the applicability of noise-assisted Ensemble Empirical Mode Decomposition (EEMD) for patient-specific seizure anticipation synchronization measures as applied to the EEMD intrinsic mode function (IMF) output. Intracranial EEG data were obtained from pre-surgical monitoring at the Epilepsy Center of the University Hospital of Freiburg. Data from twenty patients were analyzed. For each recorded channel, non-overlapping time windows were submitted to the EEMD algorithm, producing twelve levels of IMFs. IMF synchronization measures (mean and maximum coherence, mean and maximum cross-correlation, correlation coefficient and …


A Microfluidic Pretreatment Isoelectric Focusing Dc-Field Assisted H-Filter For The Separation Of Charged Particles, Cameron Sean Carroll Mar 2013

A Microfluidic Pretreatment Isoelectric Focusing Dc-Field Assisted H-Filter For The Separation Of Charged Particles, Cameron Sean Carroll

Biomedical Engineering

Microfluidic devices are small portable diagnostic chips that allow for analysis of a biologic sample at relatively low cost. This makes them ideal for settings where a hospital is unavailable. The microfluidic pretreatment isoelectric focusing DC-field assisted H-filter is a device that allows for the separation of differently charged particles in a biologic sample. It does this by employing the concepts of diffusion, electrophoresis, and isoelectric focusing. This is perfect for isolation of a desired analyte or separation of waste from a sample in order to achieve better diagnostic results. The device was first modeled mathematically and visually using Comsol. …


Effects Of Ovariectomy And Anatomical Location On Osteonal Encroachment In Adult Cortical Ovine Bone, Paige Brell Ryan Mar 2013

Effects Of Ovariectomy And Anatomical Location On Osteonal Encroachment In Adult Cortical Ovine Bone, Paige Brell Ryan

Master's Theses

The purpose of this study is to further quantify adult ovine ovariectomized bone for new remodeling characteristics to obtain a better understanding of how remodeling is occurring and the effectiveness of this animal model for the study of postmenopausal osteoporosis. Postmenopausal osteoporosis is a major health concern and animal models to test new treatment options are needed. The ovine model is a good option because the ewes undergo Haversian remodeling, are a large sized animal, and have a similar hormone profile to humans. Ewes, however, do not undergo a natural menopause, so an ovariectomy surgery was conducted in the sheep …


A Thousand Tiny Pieces: The Federal Circuit’S Fractured Myriad Ruling, Lessons To Be Learned, And The Way Forward, Jonathan R. K. Stroud Jan 2013

A Thousand Tiny Pieces: The Federal Circuit’S Fractured Myriad Ruling, Lessons To Be Learned, And The Way Forward, Jonathan R. K. Stroud

Jonathan R. K. Stroud

No abstract provided.


Engineering Nanocomposites For Antimicrobial Application, Binyu Yu Jan 2013

Engineering Nanocomposites For Antimicrobial Application, Binyu Yu

Electronic Thesis and Dissertation Repository

In this thesis, active and passive antimicrobial methods have been applied to fabricate antifouling surfaces. In the first study, we reported the synthesis and characterization of neat TiO2 and Ag-TiO2 composite nanofilms prepared on silicon wafer by sol-gel method. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination. The advantage of Ag-TiO2 nano-composites is to expand the nanomaterial’s antibacterial function to a broader range of working conditions. In the second study, we reported the synthesis, characterization and environmental application of nitrogen …


Evaluation Of Endogenous Allergens For The Safety Evaluation Of Genetically Engineered Food Crops: Review Of Potential Risks, Test Methods, Examples And Relevance, Richard E. Goodman, Rakhi Panda, Harsha Ariyarathna Jan 2013

Evaluation Of Endogenous Allergens For The Safety Evaluation Of Genetically Engineered Food Crops: Review Of Potential Risks, Test Methods, Examples And Relevance, Richard E. Goodman, Rakhi Panda, Harsha Ariyarathna

Department of Food Science and Technology: Faculty Publications

The safety of food produced from genetically engineered (GE) crops is assessed for potential risks of food allergy on the basis of an international consensus guideline outlined by the Codex Alimentarius Commission (2003). The assessment focuses on evaluation of the potential allergenicity of the newly expressed protein(s) as the primary potential risk using a process that markedly limits risks to allergic consumers. However, Codex also recommended evaluating a second concern, potential increases in endogenous allergens of commonly allergenic food crops that might occur due to insertion of the gene. Unfortunately, potential risks and natural variation of endogenous allergens in non-GE …


The Effects Of Hydrostatic Pressure On Early Endothelial Tubulogenic Processes, Ryan M. Underwood Jan 2013

The Effects Of Hydrostatic Pressure On Early Endothelial Tubulogenic Processes, Ryan M. Underwood

Theses and Dissertations--Biomedical Engineering

The effects of mechanical forces on endothelial cell function and behavior are well documented, but have not been fully characterized. Specifically, fluid pressure has been shown to elicit physical and chemical responses known to be involved in the initiation and progression of endothelial cell-mediated vascularization. Central to the process of vascularization is the formation of tube-like structures. This process—tubulogenesis—is essential to both the physiological and pathological growth of tissues. Given the known effects of pressure on endothelial cells and its ubiquitous presence in the vasculature, we investigated pressure as a magnitude-dependent parameter for the regulation of endothelial tubulogenic activity. To …


Finite Element Analysis Of Balloon-Expandable Coronary Stent Deployment: Influence Of Angioplasty Balloon Configuration, David Martin, Fergal Boyle Jan 2013

Finite Element Analysis Of Balloon-Expandable Coronary Stent Deployment: Influence Of Angioplasty Balloon Configuration, David Martin, Fergal Boyle

Articles

Today, the majority of coronary stents are balloon-expandable and are deployed using a balloon-tipped catheter. To improve deliverability, the membrane of the angioplasty balloon is typically folded about the catheter in a pleated configuration. As such, the deployment of the angioplasty balloon is governed by the material properties of the balloon membrane, its folded configuration and its attachment to the catheter. Despite this observation, however, an optimum strategy for modelling the configuration of the angioplasty balloon in finite element studies of coronary stent deployment has not been identified, and idealised models of the angioplasty balloon are commonly employed in the …