Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Medicine and Health Sciences

Imaging

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Quantitative, Spectrally-Resolved Intraoperative Fluorescence Imaging, Pablo A. Valdés, Frederic Leblond, Valerie L. Jacobs, Brian C. Wilson, Keith D. Paulsen, David W. Roberts Nov 2012

Quantitative, Spectrally-Resolved Intraoperative Fluorescence Imaging, Pablo A. Valdés, Frederic Leblond, Valerie L. Jacobs, Brian C. Wilson, Keith D. Paulsen, David W. Roberts

Dartmouth Scholarship

Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the …


Towards Omni-Tomography -- Grand Fusion Of Multiple Modalities For Simultaneous Interior Tomography, Ge Wang, Jie Zhang, Hao Gao, Victor Weir, Hengyong Yu, Wenxiang Cong, Xiaochen Xu, Haiou Shen, James Bennett, Mark Furth, Yue Wang, Michael Vannier Jun 2012

Towards Omni-Tomography -- Grand Fusion Of Multiple Modalities For Simultaneous Interior Tomography, Ge Wang, Jie Zhang, Hao Gao, Victor Weir, Hengyong Yu, Wenxiang Cong, Xiaochen Xu, Haiou Shen, James Bennett, Mark Furth, Yue Wang, Michael Vannier

Radiology Faculty Publications

We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose "omni-tomography", a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality …