Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Periodic And Dynamic 3-D Gold Nanoparticle− Dna Network Structures For Surface-Enhanced Raman Spectroscopy-Based Quantification, Kyuwan Lee Mar 2009

Periodic And Dynamic 3-D Gold Nanoparticle− Dna Network Structures For Surface-Enhanced Raman Spectroscopy-Based Quantification, Kyuwan Lee

Kyuwan Lee

The enhancement factor of gold nanoparticles linked by DNA in a three-dimensional (3-D) network structure was evaluated as 1.12 × 107 and shown to be greater than a two-dimensional (2-D) array by a factor of 10, possibly due to the dimensional expansion of resonance and periodicity of the so formed structures. Uniform and higher level of enhancement was possible from these DNA linked gold nanoparticle networks because of the matching of the resonant condition and the excitation wavelength (785 nm) to enable dynamic quantification of analytes by surface-enhanced Raman spectroscopy (SERS). The structure was first validated by obtaining a SERS …


The Use Of Ct Density Changes At Internal Tissue Interfaces To Correlate Internal Organ Motion With An External Surrogate, Stewart Gaede, Gregory Carnes, Edward Yu, Jake Van Dyk, Jerry Battista, Ting-Yim Lee Jan 2009

The Use Of Ct Density Changes At Internal Tissue Interfaces To Correlate Internal Organ Motion With An External Surrogate, Stewart Gaede, Gregory Carnes, Edward Yu, Jake Van Dyk, Jerry Battista, Ting-Yim Lee

Edward Yu

The purpose of this paper is to describe a non-invasive method to monitor the motion of internal organs affected by respiration without using external markers or spirometry, to test the correlation with external markers, and to calculate any time shift between the datasets. Ten lung cancer patients were CT scanned with a GE LightSpeed Plus 4-Slice CT scanner operating in a ciné mode. We retrospectively reconstructed the raw CT data to obtain consecutive 0.5 s reconstructions at 0.1 s intervals to increase image sampling. We defined regions of interest containing tissue interfaces, including tumour/lung interfaces that move due to breathing …