Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Tissue engineering

Doctoral Dissertations

Louisiana Tech University

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo Oct 2019

Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo

Doctoral Dissertations

Customized patient therapy has been a major research focus in recent years. There are two research fields that have made a significant contribution to realizing individualized-based treatment: targeted drug delivery and three-dimensional (3D) printing technology. With benefit from the advances in nanotechnology and biomaterial science, various drug delivery systems have been established to provide precise control of therapeutic agents release in time and space. The emergence of three-dimensional (3D) printing technology enables the fabrication of complicated structures that effectively mimic native tissues and makes it possible to print patient-specific implants. My dissertation research used a clay nanoparticle, halloysite, to develop …


Applied Electrokinetics For Tissue Engineering Applications, Stephanie R. Tully-Dartez Apr 2009

Applied Electrokinetics For Tissue Engineering Applications, Stephanie R. Tully-Dartez

Doctoral Dissertations

Tissue engineering could provide an alternative source of transplant tissue regardless of donor supply and with reduced risk of immune rejection. Engineered tissue requires three critical components for successful development: the cells, growth factors, and the scaffold on which they will initially grow. The scaffold acts as a temporary extracellular matrix (ECM) allowing cell attachment and acclimation to the environment prior to synthesis and construction of the cell's native ECM. Prior to cell seeding, the scaffold must be characterized to determine whether or not the pore geometry is conducive to cell implantation. Electrochemical impedance spectroscopy (EIS) provides a unique and …