Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Study Of The Stability Of Heparin/Collagen Layer-By-Layer Coatings, Hector M. Apodaca Reyes May 2023

Study Of The Stability Of Heparin/Collagen Layer-By-Layer Coatings, Hector M. Apodaca Reyes

Chemical Engineering Undergraduate Honors Theses

Pairing heparin with collagen-based medical implants has opened a whole new area of research for enhancing the desired effect of current implants. In fact, heparin (HEP) and collagen (COL) layer-by-layer (LbL) coatings have shown impressive results in forming polyelectrolyte multilayers. It has been already seen on skin grafts, nerve guide conduits (NGCs), and drug delivery devices yielding promising results. Due to being a simple, cost-efficient, and versatile option to fabricate thin biomimetic films, this self-assembly technique is one of the most effective methods to immobilize extracellular matrix (collagen and heparin) onto medical devices and implants. Even though previous studies have …


Regenerative Medicine For Tendon/Ligament Injuries: De Novo Equine Tendon/Ligament Neotissue Generation And Application, Takashi Taguchi Apr 2023

Regenerative Medicine For Tendon/Ligament Injuries: De Novo Equine Tendon/Ligament Neotissue Generation And Application, Takashi Taguchi

LSU Doctoral Dissertations

Tendon and ligament injuries are debilitating conditions across species. Poor regenerative capacities of these tissues limit restoration of original functions. The first study evaluated the effect of cellular administration on tendon/ligament injuries in horses using meta-analysis. The cellular administration was effective in restoring ultrasonographic echogenicity and increasing vascularity during early phase of healing. Additionally, it improved microstructural organization of healed tissue in terms of cellularity and fiber alignment. However, the study did not support its use for increasing rate of return to performance, expression/deposition of tendon-specific genes/proteins, or mechanical properties.

The findings led to the second study that engineered implantable …


Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness May 2021

Promotion Of Human Schwann Cell Proliferation Using Heparin/Collagen Coated Nerve Conduits, John Magness

Chemical Engineering Undergraduate Honors Theses

Often in the aftermath of an injury or surgery, the sense of touch and muscle control is lost in the affected area as nerves are damaged or severed and fail to grow back completely. The regeneration of the nerve cells can be promoted by treating the nerves with nerve conduits. Nerve conduits are hollow cylinders of bio-compatible materials that can be surgically implanted to the disconnected nerve to promote and direct the growth of nerves. The objectives of this research are to investigate the ability of nerve conduits treated with layer-by-layer coatings to promote the growth of Schwann cells, to …


Computational Bone Mechanics Modeling With Frequency Dependent Rheological Properties And Crosslinking, Timothy G. Moreno Mar 2021

Computational Bone Mechanics Modeling With Frequency Dependent Rheological Properties And Crosslinking, Timothy G. Moreno

Master's Theses

Bone is a largely bipartite viscoelastic composite. Its mechanical behavior is determined by strain rate and the relative proportions of its principal constituent elements, hydroxyapatite and collagen, but is also largely dictated by their geometry and topology. Collagen fibrils include many segments of tropocollagen in staggered, parallel sequences. The physical staggering of this tropocollagen allows for gaps known as hole-zones, which serve as nucleation points for apatite mineral. The distance between adjacent repeat units of tropocollagen is known as D-Spacing and can be measured by Atomic Force Microscopy (AFM). This D-Spacing can vary in length slightly within a bundle, but …


Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad May 2019

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing …


Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li Sep 2018

Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li

Electronic Thesis and Dissertation Repository

Tissue engineering aims to regenerate damaged and deceased tissue by combining cells with scaffold made from an appropriate biomaterial and providing a conducive environment to guide cell growth and the formation or regeneration of new tissue or organ. While collagen, an important material of the extracellular matrix (ECM), is a natural choice as a scaffold biomaterial, the conducive environment can only be created by having the ability to control the geometry, organization, structural and mechanical properties of the scaffold. Moreover, degradability and degradation rate control of the scaffold has to be taken into consideration too. In this work, we aim …


Bi-Directional Fatigue Life Behavior Of Bovine Meniscus, Jaremy Creechley Dec 2016

Bi-Directional Fatigue Life Behavior Of Bovine Meniscus, Jaremy Creechley

Boise State University Theses and Dissertations

Meniscal injuries due to tissue tearing are prevalent in the U.S. yet the failure behavior of the meniscus is poorly understood. Clinical studies indicate that fatigue failure causes many of these tears. The highly circumferentially aligned fibers result in transversely isotropic material properties. Tears preferentially align bi-directionally to the fiber orientation. The aim of this study is to present the bi-directional fatigue life behavior of meniscal fibrocartilage. A novel fatigue life approach was developed to achieve this aim. Forty-eight bovine specimens were subjected to cyclic sinusoidal tension-tension stress at 2 Hz until rupture. Normalized peak tensile stresses were determined at …


Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare Nov 2015

Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare

Masters Theses

The extracellular matrix (ECM) provides mechanical and biochemical support to tissues and cells. It is crucial for cell attachment, differentiation, and migration, as well as for ailment-associated processes such as angiogenesis, metastases and cancer development. An approach to study these phenomena is through emulation of the ECM by synthetic gels constructed of natural polymers, such as collagen and fibronectin, or simple but tunable materials such as poly(ethylene glycol) (PEG) crosslinked with short peptide sequences susceptible to digestion by metalloproteases and cell-binding domains. Our lab uses PEG gels to study cell behavior in three dimensions (3D). Although this system fosters cell …


Oriented Collagen And Applications Of Waveguide Evanescent Field Scattering (Wefs) Microscopy, Qamrun Nahar Apr 2014

Oriented Collagen And Applications Of Waveguide Evanescent Field Scattering (Wefs) Microscopy, Qamrun Nahar

Electronic Thesis and Dissertation Repository

In this thesis, Waveguide Evanescent Field Scattering (WEFS) microscopy is developed as a non-invasive, label-free live cell imaging technique. This new high-contrast imaging can be employed to study the first hundred nanometers from the surface as it utilizes the evanescent field of a waveguide as the illumination source. Previously, waveguide evanescent field fluorescence (WEFF) microscopy was developed as a fluorescence imaging technique comparable to the total internal reflection fluorescent (TIRF) microscopy. Both the WEFF and WEFS technique utilizes the same fundamental concepts except in WEFS microscopy imaging is accomplished without the application of any fluorescent labeling. In this work, bacterial …


Nanomechanics Of Electrospun Nanofibres For Tissue Engineering Of The Tympanic Membrane, Sara Makaremi Dec 2012

Nanomechanics Of Electrospun Nanofibres For Tissue Engineering Of The Tympanic Membrane, Sara Makaremi

Electronic Thesis and Dissertation Repository

The Tympanic Membrane (TM), also known as the eardrum, includes layers of organized collagen nanofibres which play an essential role in sound transmission. Perforations that are caused by infection or accident must be repaired in order to restore hearing. Tympanoplasty is performed using grafts that are prepared from bladder, cartilage, temporal fascia and cadaveric skin. However, since mechanical properties of these grafts do not match those of the original TM, normal hearing is not fully restored. The goal of this study is to develop nanofibrous scaffolds for tissue engineering of the TM in order to circumvent the complications addressed with …