Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Elucidating Mechanisms Of Metastasis With Implantable Biomaterial Niches, Ryan Adam Carpenter Jul 2020

Elucidating Mechanisms Of Metastasis With Implantable Biomaterial Niches, Ryan Adam Carpenter

Doctoral Dissertations

Metastasis is the leading cause of cancer related deaths, yet it remains the most poorly understood aspect of tumor biology. This can be attributed to the lack of relevant experimental models that can recapitulate the complex and lengthy progression of metastatic relapse observed in patients. Mouse models have been widely used to study cancer, however they are critically limited to study metastasis. Most models generate aggressive metastases in the lung without the use of unique cell lines or specialized injection techniques. This limits the ability to study disseminated tumor cells (DTCs) in other relevant metastasis prone tissues. Prolonged observation of …


Manipulation And Patterning Of Mammalian Cells Using Vibrations And Acoustic Forces, Joel Cooper Apr 2020

Manipulation And Patterning Of Mammalian Cells Using Vibrations And Acoustic Forces, Joel Cooper

USF Tampa Graduate Theses and Dissertations

Recently, there has been a surge in researchers and scientists investigating different methods which move, manipulate, and pattern biological cells. Multiple different mechanisms can be used for cellular manipulation, microfluidics, biochemical queues, and even optics, just to name a few. However, all techniques have their downsides. A majority of these methods require expensive equipment or reagents and can only manipulate a small number of cells at a time.

Some of the most common cell manipulation devices utilize acoustic pressure waves to move the cells to desired locations. Currently, it is unknown what level of force from these types of devices …


In Vitro Atherosclerosis Disease Model Via The Ring Stacking Method, Cameron Brandon Pinnock Jan 2020

In Vitro Atherosclerosis Disease Model Via The Ring Stacking Method, Cameron Brandon Pinnock

Wayne State University Dissertations

Creation of an in vitro atherosclerotic disease model using the novel Ring Stacking Method. Singular self-assembling tissue rings made up smooth muscle cells and fibrin hydrogel are stacked on one another to create a tissue engineered vessel. These biologically engineered blood vessels are then seeded with endothelial cells via combined static rotational and dynamic bioreactor in order to create a functional intima layer. Early stage atherosclerosis was induced via the addition of oxidized low-density lipoproteins (ox-LDL) to the fibrin hydrogel that creates the media layer of the engineered vessel. After the creation of the intima layer the engineered vessel was …


Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao Jan 2020

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

The mechanotransduction of cells is the intrinsic ability of cells to convert the mechanical signals provided by the surrounding matrix and other cells into biochemical signals that affect several distinct processes such as tumorigenesis, wound healing, and organ formation. The use of biomaterials as an artificial scaffold for cell attachment, differentiation and proliferation provides a tool to modulate and understand the mechanotransduction pathways, develop better in vitro models and clinical remedies. The effect of topographical cues and stiffness was investigated in fibroblasts using polycaprolactone (PCL)- Polyaniline (PANI) based scaffolds that were fabricated using a self-assembly method and electrospinning. Through this …