Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Acrolein As A Novel Therapeutic Target For Spinal Cord Injury Induced Neuropathic Pain, Jonghyuck Park Oct 2014

Acrolein As A Novel Therapeutic Target For Spinal Cord Injury Induced Neuropathic Pain, Jonghyuck Park

Open Access Dissertations

Despite years of research, post-spinal cord injury (SCI) chronic neuropathic pain remains refractory to treatment and drastically impairs quality of life for SCI victims beyond paralysis. Although inflammation and free radicals contribute to neuropathic pain in SCI, the mechanism is not completely clear. We have recently demonstrated that acrolein, a product and catalyst of lipid peroxidation, induces a vicious cycle of oxidative stress, amplifying its effects and perpetuating oxidative stress and inflammation. In the current study, we have confirmed that acrolein is elevated significantly at least two weeks post-SCI which coincides with the emergence of hyperalgesia (mechanical, cold and thermal). …


Development Of A Static Bioactive Stent Prototype And Dynamic Aneurysm-On-A-Chip(Tm) Model For The Treatment Of Aneurysms, Lisa M. Reece Oct 2014

Development Of A Static Bioactive Stent Prototype And Dynamic Aneurysm-On-A-Chip(Tm) Model For The Treatment Of Aneurysms, Lisa M. Reece

Open Access Dissertations

Aneurysms are pockets of blood that collect outside blood vessel walls forming dilatations and leaving arterial walls very prone to rupture. Current treatments include: (1) clipping, and (2) coil embolization, including stent-assisted coiling. While these procedures can be effective, it would be advantageous to design a biologically active stent, modified with magnetic stent coatings, allowing cells to be manipulated to heal the arterial lining. Further, velocity, pressure, and wall shear stresses aid in the disease development of aneurysmal growth, but the shear force mechanisms effecting wound closure is elusive. Due to these factors, there is a definite need to cultivate …


Probabilistic Uncertainty Quantification And Experiment Design For Nonlinear Models: Applications In Systems Biology, Vu Cao Duy Thien Dinh Oct 2014

Probabilistic Uncertainty Quantification And Experiment Design For Nonlinear Models: Applications In Systems Biology, Vu Cao Duy Thien Dinh

Open Access Dissertations

Despite the ever-increasing interest in understanding biology at the system level, there are several factors that hinder studies and analyses of biological systems. First, unlike systems from other applied fields whose parameters can be effectively identified, biological systems are usually unidentifiable, even in the ideal case when all possible system outputs are known with high accuracy. Second, the presence of multivariate bifurcations often leads the system to behaviors that are completely different in nature. In such cases, system outputs (as function of parameters/inputs) are usually discontinuous or have sharp transitions across domains with different behaviors. Finally, models from systems biology …


Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson Oct 2014

Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson

Open Access Dissertations

The nucleus is a membrane bound organelle and regulation center for gene expression in the cell. Mechanical forces transfer to the nucleus directly and indirectly through specific cellular cytoskeletal structures and pathways. There is increasing evidence that the transferred forces to the nucleus orchestrate gene expression activity. Methods to characterize nuclear mechanics typically study isolated cells or cells embedded in 3D gel matrices. Often report only aspect ratio and volume changes, measures that oversimplify the inherent complexity of internal strain patterns. This presents technical challenges to simultaneously observe small scale nuclear mechanics and gene expression levels inside the nuclei of …


Hierarchical Cell Fluid Extracellular Matrix Interaction In Cell Microenvironment, Soham Ghosh Oct 2014

Hierarchical Cell Fluid Extracellular Matrix Interaction In Cell Microenvironment, Soham Ghosh

Open Access Dissertations

Hierarchical structural interactions between components of cell microenvironment, the extracellular matrix (ECM), cytoplasm, nucleus and fluid, are important phenomena that decide cell level physiological process and tissue engineering applications. One of those tissue engineering modalities is freezing of biomaterials, important in a wide variety of biomedical applications including cryopreservation and cryosurgeries. In order to design these applications, freezing-induced changes of the cells and tissues and corresponding biophysical mechanisms need to be well understood. Although the effects of freezing on cells in suspension have been extensively studied, the intracellular mechanics of cells embedded in the extracellular matrix (ECM) during freezing are …


Development Of Planar Patch Clamp With Potentiometric Calcium Ion-Selective Electrode, Kul Inn Oct 2014

Development Of Planar Patch Clamp With Potentiometric Calcium Ion-Selective Electrode, Kul Inn

Open Access Dissertations

Ion channels are proteins in cell lipid bilayer membranes and act as pores which can adopt closed and open states, thus gating the flow of ions in and out of the cell. Patch clamp technology has been the proven standard for fundamental studies of ion channel activities. However, the technique has some basic limitations: low throughput, time consuming nature of its process, need of highly skilled personnel and inability to identify ionic composition of electrophysiological events. Many different materials and fabrication methods have been introduced to replace traditional patch clamp setup to overcome limitations.^ In this dissertation, a planar patch …


Theory For Diffusional Encounters In Heterogeneous Environments And Multivalent Electrolyte Screening Of Charged Interface, Ran Li Oct 2014

Theory For Diffusional Encounters In Heterogeneous Environments And Multivalent Electrolyte Screening Of Charged Interface, Ran Li

Open Access Dissertations

We develop a theory for encounter rates in a three-dimensional system of connected compartments. The model of connected compartments exhibits the length-scale dependent diffusion that is observed in many heterogeneous environments, such as porous catalysts and biological environments. We discovered a dimensionless number that is the dominant scaling variable and obtained, for the first time, an analytical expression for the encounter rate. The new theory generalizes the classic Smoluchowski diffusion limit to the case of heterogeneous environments. The new theory is tested using Brownian dynamics simulations.^ We also experimentally investigated the behavior of multivalent electrolyte near a charged solid-liquid interface. …


Algorithm-Circuit Co-Design For Detecting Symptomatic Patterns In Biological Signals, Himanshu Markandeya Oct 2014

Algorithm-Circuit Co-Design For Detecting Symptomatic Patterns In Biological Signals, Himanshu Markandeya

Open Access Dissertations

The advancement in scaled Silicon technology has accelerated the development of a wide range of applications in various fields including medical technology. It has immensely contributed to finding solutions for monitoring general health as well as alleviating intractable disorders in the form of implantable and wearable systems. This necessitates the development of energy efficient and functionally efficacious systems. This thesis has explored the algorithm-circuit co-design approach for developing an energy efficient epileptic seizure detection processor which could be used for implantable epilepsy prosthesis. Novel wavelet transform based algorithms are proposed for accurate detection of epileptic seizures. Energy efficient techniques at …


Structure-Functionality Relationship Of Collagen Scaffolds For Tissue Engineering, Seungman Park Oct 2014

Structure-Functionality Relationship Of Collagen Scaffolds For Tissue Engineering, Seungman Park

Open Access Dissertations

Tissue engineering is a promising technology that enables scientists to create artificial organs or replace damaged tissues using animal cells and other components. For successful tissue regeneration, many factors should be taken into account, however, three components are most crucial: cell, scaffold, and soluble factor(s). In order to check the functionality after regeneration of desired tissues, various approaches have been attempted, depending on the physical, biological, and chemical properties of the tissues. Recently, the importance of the extracellular matrix (ECM) microstructure is being considered to be important in this regard. The ECM is closely associated with various functional properties of …


Understanding Preferred Leg Stiffness And Layered Control Strategies For Locomotion, Zhuohua H. Shen Oct 2014

Understanding Preferred Leg Stiffness And Layered Control Strategies For Locomotion, Zhuohua H. Shen

Open Access Dissertations

Despite advancement in the field of robotics, current legged robots still cannot achieve the kind of locomotion stability animals and humans have. In order to develop legged robots with greater stability, we need to better understand general locomotion dynamics and control principles. Here we demonstrate that a mathematical modeling approach could greatly enable the discovery and understanding of general locomotion principles. ^ It is found that animal leg stiffness when scaled by its weight and leg length falls in a narrow region between 7 and 27. Rarely in biology does such a universal preference exist. It is not known completely …