Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of A Heart Rate Variability Measurement System Using Embedded Electronics, Naresh Kumar Velmurugan Dec 2014

Development Of A Heart Rate Variability Measurement System Using Embedded Electronics, Naresh Kumar Velmurugan

Graduate Theses and Dissertations

Recent advances in embedded electronics have a remarkable influence on the health care system. One of the most important applications is to monitor the health care of the patients at anytime and anyplace. In the last two decades, many researchers have focused mainly on heart rate variability (HRV) measurements. Patient's heart rate variability should be continuously monitored to help them in case of emergency. Under these circumstances, patients are required to have a HRV measuring kit for a constant observation.

The proposed project focuses on the development of a heart rate variability measurement system with the use of embedded electronics. …


A Subject-Specific Multiscale Model Of Transcranial Magnetic Stimulation, Brian Daniel Goodwin Oct 2014

A Subject-Specific Multiscale Model Of Transcranial Magnetic Stimulation, Brian Daniel Goodwin

Dissertations (1934 -)

Transcranial magnetic stimulation (TMS) is a neuromodulation technique used to treat a variety of neurological disorders. While many types of neuromodulation therapy are invasive, TMS is an attractive alternative because it is noninvasive and has a very strong safety record. However, clinical use of TMS has preceded a thorough scientific understanding: its mechanisms of action remain elusive, and the spatial extent of modulation is not well understood. We created a subject-specific, multiscale computational model to gain insights into the physiological response during motor cortex TMS. Specifically, we developed an approach that integrates three main components: 1) a high-resolution anatomical MR …


Neuromodulation For Depression: Insights Gained From Neuroimaging And Computational Models, Yagna Pathak Oct 2014

Neuromodulation For Depression: Insights Gained From Neuroimaging And Computational Models, Yagna Pathak

Dissertations (1934 -)

Major depressive disorder (MDD) is a public health concern worldwide, affecting a sixth of the American population. Neuromodulation therapies have been employed to treat severe cases of treatment resistant depression. These procedures attempt to modulate activity in cortical regions that represent nodes in brain circuits believed to be involved in MDD. One challenge in neuromodulation trials has been the difficulty in quantifying outcome variability. We sought to understand the effects of neuromodulation therapies and their sources of variability while adding an objective perspective to assess clinical improvement in neuropsychiatric disorders such as depression. The goal of my dissertation was to …


Improving Golf Putt Performance With Statistical Learning Of Eeg Signals, Qing Guo Aug 2014

Improving Golf Putt Performance With Statistical Learning Of Eeg Signals, Qing Guo

Graduate Theses and Dissertations

In this thesis, a machine learning based method is proposed to predict the putt outcomes of golfers based on their electroencephalogram (EEG) data. The method can be used as a core building block of a brain-computer interface, which is designed to provide guidance to golf players based on their EEG patterns. The proposed method includes three steps. First, multi-channel 1-second EEG trials were extracted during golfers' preparation of putting. Second, different features are calculated such as correlation coefficient, power spectrum density and coherence, which are used as features for the classification algorithm. To predict golfers' performance, the support vector machine …


Nerve Fiber Diameter Measurements Using Hematoxylin And Eosin Staining And Brightfield Microscopy To Assess The Novel Method Of Characterizing Peripheral Nerve Fiber Distributions By Group Delay, Jorge Arturo Vazquez Aug 2014

Nerve Fiber Diameter Measurements Using Hematoxylin And Eosin Staining And Brightfield Microscopy To Assess The Novel Method Of Characterizing Peripheral Nerve Fiber Distributions By Group Delay, Jorge Arturo Vazquez

Master's Theses

Peripheral neuropathies are a set of common diseases that affect the peripheral nervous system, causing damage to vital connections between various parts of the body and the brain and spinal cord. Different clinical conditions are known to selectively impact various size nerve fibers, which often makes it difficult to diagnose which peripheral neuropathy a patient might have. The nerve conduction velocity diagnostic test provides clinically useful information in the diagnosis of some peripheral neuropathies. This method is advantageous because it tends to be minimally invasive yet it provides valuable diagnostic information. However, this test does not determine characteristics of peripheral …


Investigating Hemodynamic Responses To Electrical Neurostimulation, Sean Youra Aug 2014

Investigating Hemodynamic Responses To Electrical Neurostimulation, Sean Youra

Master's Theses

Since the 1900s, the number of deaths attributable to cardiovascular disease has steadily risen. With the advent of antihypertensive drugs and non-invasive surgical procedures, such as intravascular stenting, these numbers have begun to level off. Despite this trend, the number of patients diagnosed with some form of cardiovascular disease has only increased. By 2030, prevalence of coronary heart disease is expected to increase approximately by 18% in the United States. By 2050, prevalence of peripheral arterial occlusive disease is expected to increase approximately by 98% in the U.S. No single drug or surgical intervention offers a complete solution to these …


Empirical Modeling Of Asynchronous Scalp Recorded And Intracranial Eeg Potentials, Komalpreet Kaur Jul 2014

Empirical Modeling Of Asynchronous Scalp Recorded And Intracranial Eeg Potentials, Komalpreet Kaur

Electrical & Computer Engineering Theses & Dissertations

A Brain-Computer Interface (BCI) is a system that allows people with severe neuromuscular disorders to communicate and control devices using their brain signals. BCIs based on scalp-recorded electroencephalography (s-EEG) have recently been demonstrated to provide a practical, long-term communication channel to severely disabled users. These BCIs use time-domain s-EEG features based on the P300 event-related potential to convey the user's intent. The performance of s-EEG-based BCIs has generally stagnated in recent years, and high day-to-day performance variability exists for some disabled users. Recently intracranial EEG (i-EEG), which is recorded from the cortical surface or the hippocampus, has been successfully used …


Neuromodulation: Action Potential Modeling, Vladimir Ruzov Jun 2014

Neuromodulation: Action Potential Modeling, Vladimir Ruzov

Master's Theses

There have been many different studies performed in order to examine various properties of neurons. One of the most important properties of neurons is an ability to originate and propagate action potential. The action potential is a source of communication between different neural structures located in different anatomical regions. Many different studies use modeling to describe the action potential and its properties. These models mathematically describe physical properties of neurons and analyze and explain biological and electrochemical processes such as action potential initiation and propagation. Therefore, one of the most important functions of neurons is an ability to provide communication …


Wirelesseeg: Data Aquisition + Handheld Device, Michael Dylan Snowden, Madeline Threatt, Brent Mcferrin, David Platillero, Karsten Solies, Lindsey Hopf May 2014

Wirelesseeg: Data Aquisition + Handheld Device, Michael Dylan Snowden, Madeline Threatt, Brent Mcferrin, David Platillero, Karsten Solies, Lindsey Hopf

Chancellor’s Honors Program Projects

No abstract provided.


Dynamic Complexity And Causality Analysis Of Scalp Eeg For Detection Of Cognitive Deficits, Joseph Curtis Mcbride May 2014

Dynamic Complexity And Causality Analysis Of Scalp Eeg For Detection Of Cognitive Deficits, Joseph Curtis Mcbride

Doctoral Dissertations

This dissertation explores the potential of scalp electroencephalography (EEG) for the detection and evaluation of neurological deficits due to moderate/severe traumatic brain injury (TBI), mild cognitive impairment (MCI), and early Alzheimer’s disease (AD). Neurological disorders often cannot be accurately diagnosed without the use of advanced imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Non-quantitative task-based examinations are also used. None of these techniques, however, are typically performed in the primary care setting. Furthermore, the time and expense involved often deters physicians from performing them, leading to potential worse prognoses for patients.

If …


Tht And Capillary Electrophoresis To Monitor The Effects Of Solutions Conditions On Amylin Aggregation, Michael May May 2014

Tht And Capillary Electrophoresis To Monitor The Effects Of Solutions Conditions On Amylin Aggregation, Michael May

Graduate Theses and Dissertations

Amylin (hIAPP) aggregates have been found in 90% of patients with type II diabetes at autopsy, and are suspected to play a role in the death of islet &beta-cells1. However, this aggregation process is not well understood. Here, we explore methods that utilize capillary electrophoresis (CE) as a means to better understand amylin's aggregation process.

We examined the effects of solutions conditions: agitation, pH, salt, and temperature on amylin aggregation using Thioflavin T, dot blots, and capillary electrophoresis. Thiofalvin T was used to predict the lag time to &beta-sheet formation. Our results indicated all variables with the exception …


Reading And Wirelessly Sending Eeg Signals Using Arduinos And Xbee Radios To Control A Robot, Andrew Paul Simms May 2014

Reading And Wirelessly Sending Eeg Signals Using Arduinos And Xbee Radios To Control A Robot, Andrew Paul Simms

Electrical Engineering Undergraduate Honors Theses

The objective of this project is to develop an EEG device that can read brainwaves from an individual, analyze the data, and use the result to send a wireless signal using Arduinos and XBee Radios to a Boe-bot to perform an action. One of the goals of this project is to read EEG data with a higher sampling frequency than a previously manufactured EEG device. The second part of the project used the device developed to differentiate an individual’s thinking between right and left and then send a simple signal to a robot using an XBee radio to perform an …


Neuromodulation Based Control Of Autonomous Robots On A Cloud Computing Platform, Cameron Muhammad Jan 2014

Neuromodulation Based Control Of Autonomous Robots On A Cloud Computing Platform, Cameron Muhammad

Electronic Theses and Dissertations

In recent years, the advancement of neurobiologically plausible models and computer networking has resulted in new ways of implementing control systems on robotic platforms. The work presents a control approach based on vertebrate neuromodulation and its implementation on autonomous robots in the open-source, open-access environment of robot operating system (ROS). A spiking neural network (SNN) is used to model the neuromodulatory function for generating context based behavioral responses of the robots to sensory input signals. The neural network incorporates three types of neurons- cholinergic and noradrenergic (ACh/NE) neurons for attention focusing and action selection, dopaminergic (DA) neurons for rewards- and …