Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Quantitative Optical Imaging Of Metabolic And Structural Biomarkers In Rodent Injury Models, Shima Mehrvar May 2020

Quantitative Optical Imaging Of Metabolic And Structural Biomarkers In Rodent Injury Models, Shima Mehrvar

Theses and Dissertations

The assessment of organ metabolic function using optical imaging techniques is an overgrowing field of disease diagnosis. The broad research objective of my PhD thesis is to detect quantitative biomarkers by developing and applying optical imaging and image processing tools to animal models of human diseases. To achieve this goal, I have designed and implemented an optical imaging instrument called in vivo fluorescence imager to study wound healing progress. I have also developed a 3-dimensional (3D) vascular segmentation technique that uses intrinsic fluorescence images of whole organs.

Intrinsic fluorophores (autofluorescence signals) provide information about the status of cellular bioenergetics in …


On-Demand Electrically Induced Decomposition Of Thin-Film Nitrocellulose Membranes For Wearable Or Implantable Biosensor Systems, Benjamin M. Horstmann Jan 2020

On-Demand Electrically Induced Decomposition Of Thin-Film Nitrocellulose Membranes For Wearable Or Implantable Biosensor Systems, Benjamin M. Horstmann

Theses and Dissertations

Implantable or subcutaneous biosensors used for continuous health monitoring have a limited functional lifetime requiring frequent replacement and therefore may be highly discomforting to the patient and become costly. One possible solution to this problem is use of biosensor arrays where each individual reserve sensor can be activated on-demand when the previous one becomes inoperative due to biofouling or enzyme degradation. Each reserve biosensor in the array is housed in an individual Polydimethylsiloxane (PDMS) well and is protected from exposure to bodily fluids such as interstitial fluid ( ISF) by a thin-film nitrocellulose membrane. Controlled activation is achieved by decomposing …