Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Effects Of Malformed Or Absent Valves To Lymphatic Fluid Transport And Lymphedema In Vivo In Mice, Akshay S. Pujari Oct 2017

Effects Of Malformed Or Absent Valves To Lymphatic Fluid Transport And Lymphedema In Vivo In Mice, Akshay S. Pujari

Masters Theses

Lymph is primarily composed of fluid and proteins from the blood circulatory system that drain into the space surrounding cells, interstitial space. From the interstitial space, the fluid enters and circulates in the lymphatic system until it is delivered into the venous system. In contrast to the blood circulatory system, the lymphatic system lacks a central pumping organ dictating the predominant driving pressure and velocity of lymph. Transport of lymph via capillaries, pre-collecting and collecting lymphatic vessels relies on the synergy between pressure gradients, local tissue motion, valves and lymphatic vessel contractility. The direction of lymph transport is regulated by …


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jul 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque can …


Were Neandertal Humeri Adapted For Spear Thrusting Or Throwing? A Finite Element Study, Michael Anthony Berthaume Nov 2014

Were Neandertal Humeri Adapted For Spear Thrusting Or Throwing? A Finite Element Study, Michael Anthony Berthaume

Masters Theses

An ongoing debate concerning Neandertal ecology is whether or not they utilized long range weaponry. The anteroposteriorly expanded cross-section of Neandertal humeri have led some to argue they thrusted their weapons, while the rounder cross-section of Late Upper Paleolithic modern human humeri suggests they threw their weapons. We test the hypothesis that Neandertal humeri were built to resist strains engendered by thrusting rather than throwing using finite element models of one Neandertal, one Early Upper Paleolithic (EUP) human and three recent human humeri, representing a range of cross-sectional shapes and sizes. Electromyography and kinematic data and articulated skeletons were used …