Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Analysis And Enhancement Of Human Cognitive Control Using Noninvasive Brain-Computer Interfaces, Soheil Borhani Dec 2020

Analysis And Enhancement Of Human Cognitive Control Using Noninvasive Brain-Computer Interfaces, Soheil Borhani

Doctoral Dissertations

Cognitive control including attention and working memory are crucial to human daily life. Whether a civilian who walks across a street or a military service member who is responsible for navigating a mission, cognitive control is involved, entirely. This ability is subject to impairment. People with attention disorder are easily disposed to distraction and lacks the ability to maintain the focus to a task. Multiple treatment strategies have been suggested which most of them has been pharmaceutical. Evidently, the medical treatment has side effects for long-term use. Moreover, it has a risk of drug misuse. Another line of treatment is …


Development Of A Low Profile, Endoscopic Implant For Long Term Brain Imaging, Benjamin Scott Kemp Aug 2019

Development Of A Low Profile, Endoscopic Implant For Long Term Brain Imaging, Benjamin Scott Kemp

Doctoral Dissertations

The increased public awareness of concussion and traumatic brain injury has motivated continued research into the brain, its functions, and especially its response to injury, with a focus on improving the brain’s repair capabilities. However, due to the critical nature of the tissue, it is currently difficult for researchers to acquire high resolution images below the cortex without sacrificing a lab animal. Sacrificing an animal greatly reduces the amount of data that can be obtained from it, making longitudinal studies unappealing or unfeasible because a large number of animals is needed to obtain useful data over multiple time points. Additionally, …


Development Of An Astrocyte/Glioma Co-Culture System For Measuring Cellular Dynamics, Urna Kansakar Feb 2019

Development Of An Astrocyte/Glioma Co-Culture System For Measuring Cellular Dynamics, Urna Kansakar

Doctoral Dissertations

Gliomas are brain tumors that primarily arise from glial cells. Gliomas account for 70% of the brain tumors and they are more prevalent in older adults. About 60% of the people with gliomas experience at least one seizure. Brain tumors can grow and metastasize to neighboring areas, thereby destroying normal brain cells. In a brain tumor microenvironment, both malignant cancer cells and healthy brain cells are present. Studies have shown that astrocytes may have a role in tumor growth in the brain. Monocultures cannot evaluate interactions between two cell types and does not accurately represent in vivo conditions. Thus, a …


Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar Nov 2016

Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar

Doctoral Dissertations

As assistive, wearable robotic devices are being developed to physically assist their users, it has become crucial to develop safe, reliable methods to coordinate the device with the intentions and motions of the wearer. This dissertation investigates the recognition of user intent during flexion and extension of the human torso in the sagittal plane to be used for control of an assistive exoskeleton for the human torso. A multi-sensor intent recognition approach is developed that combines information from surface electromyogram (sEMG) signals from the user’s muscles and inertial sensors mounted on the user’s body. Intent recognition is implemented by following …


Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi May 2016

Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi

Doctoral Dissertations

This dissertation combines self-assembly phenomena of amphiphilic molecules with soft materials to create and characterize mechanoelectrical transducers and sensors whose sensing elements are thin-film bioinspired membranes comprised of phospholipids or amphiphilic polymers. We show that the structures of these amphiphilic molecules tune the mechanical and electrical properties of these membranes. We show that these properties affect the mechanoelectrical sensing characteristic and range of operation of these membrane transducers. In the experiments, we construct and characterize a membrane-based hair cell embodiment that enables the membrane to be responsive to mechanical perturbations of the hair. The resulting oscillations of membranes formed between …


Alternating Current Electrokinetics Based Capacitive Affinity Biosensor: A Point-Of-Care Diagnostic Platform, Haochen Cui Aug 2015

Alternating Current Electrokinetics Based Capacitive Affinity Biosensor: A Point-Of-Care Diagnostic Platform, Haochen Cui

Doctoral Dissertations

Capacitive bioaffinity detection using microelectrodes is considered as a promising label-free method for point-of-care diagnosis, though with challenges in sensitivity, specificity and the time “from sample to result.” This work presents an alternating current (AC)-electrokinetic based capacitive affinity sensing method that is capable of realizing rapid in-situ detection of specific biomolecular interactions such as probe-analyte binding. The capacitive biosensor presented here employs elevated AC potentials at a fixed frequency for impedimetric interrogation of the microelectrodes. Such an AC signal is capable of inducing dielectrophoresis (DEP) and AC electrothermal (ACET) effects, so as to realize in-situ enrichment of macro and even …


Dynamic Complexity And Causality Analysis Of Scalp Eeg For Detection Of Cognitive Deficits, Joseph Curtis Mcbride May 2014

Dynamic Complexity And Causality Analysis Of Scalp Eeg For Detection Of Cognitive Deficits, Joseph Curtis Mcbride

Doctoral Dissertations

This dissertation explores the potential of scalp electroencephalography (EEG) for the detection and evaluation of neurological deficits due to moderate/severe traumatic brain injury (TBI), mild cognitive impairment (MCI), and early Alzheimer’s disease (AD). Neurological disorders often cannot be accurately diagnosed without the use of advanced imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Non-quantitative task-based examinations are also used. None of these techniques, however, are typically performed in the primary care setting. Furthermore, the time and expense involved often deters physicians from performing them, leading to potential worse prognoses for patients.

If …