Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Dissertations

Electrical and Computer Engineering

Medical imaging

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Scanless Optical Coherence Tomography For High-Speed 3d Biomedical Microscopy, Yahui Wang May 2020

Scanless Optical Coherence Tomography For High-Speed 3d Biomedical Microscopy, Yahui Wang

Dissertations

Optical coherence tomography (OCT) is a high-resolution cross-sectional imaging modality that has found applications in a wide range of biomedical fields, such as ophthalmology diagnosis, interventional cardiology, surgical guidance, and oncology. OCT can be used to image dynamic scenes, in quantitative blood flow sensing and visualization, dynamic optical coherence elastography, and large-scale neural recording. However, the spatiotemporal resolution of OCT for dynamic imaging is limited by the approach it takes to scan the three-dimensional (3-D) space. In a typical OCT system, the incident light is focused to a point at the sample. The OCT system uses mechanical scanners (galvanometers or …


Dual Modality Optical Coherence Tomography : Technology Development And Biomedical Applications, Farzana Rahmat Zaki May 2019

Dual Modality Optical Coherence Tomography : Technology Development And Biomedical Applications, Farzana Rahmat Zaki

Dissertations

Optical coherence tomography (OCT) is a cross-sectional imaging modality that is widely used in clinical ophthalmology and interventional cardiology. It is highly promising for in situ characterization of tumor tissues. OCT has high spatial resolution and high imaging speed to assist clinical decision making in real-time.

OCT can be used in both structural imaging and mechanical characterization. Malignant tumor tissue alters morphology. Additionally, structural OCT imaging has limited tissue differentiation capability because of the complex and noisy nature of the OCT signal. Moreover, the contrast of structural OCT signal derived from tissue’s light scattering properties has little chemical specificity. Hence, …