Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Biomedical Engineering and Bioengineering

Bone And Cartilage Compression Simulator, Karoline M. Wucherer, Benjamin A. Parmentier, Thomasina E. Hinkle Mar 2022

Bone And Cartilage Compression Simulator, Karoline M. Wucherer, Benjamin A. Parmentier, Thomasina E. Hinkle

Biomedical Engineering

A device was developed that delivers mechanical loads to bone and soft tissue samples under physiological conditions to aid in the research of tissue engineering bone and cartilage. To begin the design process, a Network Diagram and Gantt Chart were produced to create a general timeline for the project to follow. This allowed us to measure our progress and determine what effects (if any) delays could have on our project.


The Impact Of Myoblast Transplantation On Collateral Capillary Arteriogenesis And Macrophage Phenotype, Christine Hue Do Jun 2021

The Impact Of Myoblast Transplantation On Collateral Capillary Arteriogenesis And Macrophage Phenotype, Christine Hue Do

Biomedical Engineering

Gangrene, pain, loss of limb function, amputation, and death are only few of the grievous consequences associated with peripheral arterial disease (PAD), a vascular disease caused by an obstruction that narrows the blood vessels. Since some patients have collateral vessels that can re-route blood to its downstream destination, much focus has been spotlighted upon discovering the mechanism of this process, termed arteriogenesis, as well as cell therapies to increase arterial diameter of collateral vessels. Since some patients do not have native pre-existing collateral vessels, another method to re-route blood is through arterialized collateral capillaries (ACC), which is the conversion of …


Mechanisms Of Reduced Vascular Tone Following Arteriogenesis Induced By Femoral Artery Ligation, Christopher Hatch Aug 2019

Mechanisms Of Reduced Vascular Tone Following Arteriogenesis Induced By Femoral Artery Ligation, Christopher Hatch

Biomedical Engineering

The presence of a developed, native collateral network can decrease the severity of ischemic injury proceeding arterial occlusion. The collateral network must under arteriogenesis to enlarge and increase blood flow to the ischemic region. Although there has been tremendous effort attempting to understand the mechanisms of arteriogenesis, no therapies have been successful in improving patient outcome. To better understand the mechanisms involved in arteriogenesis, the effect of nitric oxide production, myogenic tone, and a-adrenergic receptors were evaluated as these have been identified as playing an important role in vascular injury. Arteriogenesis was induced by ligating the femoral artery between the …


Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson Mar 2019

Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson

Biomedical Engineering

This project report provides a description of the progress made in the development of a fluid delivery system for a microfluidic cell culture on a chip. The system is intended to be used in a humidified incubator in a university laboratory and the fluid delivery system is required to exist and operate within that incubator for extended periods of time. Therefore, the system will be gravity-driven and contain no electronic components. The key specification of the system is to provide fluid flow at a constant velocity.

After manufacturing and testing the device, all specifications were met except for the fluid …


Plga Scaffold Device, Tyler D. Tackabery, Bryce Powada, Tate Morell Mar 2019

Plga Scaffold Device, Tyler D. Tackabery, Bryce Powada, Tate Morell

Biomedical Engineering

No abstract provided.


Pressure Cylinder Controlled Release Valve, Alexa Dominique Balbuena Mar 2019

Pressure Cylinder Controlled Release Valve, Alexa Dominique Balbuena

Biomedical Engineering

This project aims to integrate an automatic gas release system in a pre-existing scaffold fabrication process for tissue engineering applications.

To form the proper scaffold structure, the fabrication process is heavily influenced by the change in its surrounding pressure. The current production involves a pressure transducer and electric valve that is managed manually to create a suitable pressure environment for the scaffold. This method, although functional, proves to be ineffective when creating several batches; the user needs to constantly monitor the developing pressure profile and alter voltage parameters accordingly to create a linear gas release under a predetermined slope.

To …


Influence Of Fibroblasts On Functional Arteriogenesis In A Murine Chronic Hindlimb Ischemia Model, Ashli A. Santos Sep 2017

Influence Of Fibroblasts On Functional Arteriogenesis In A Murine Chronic Hindlimb Ischemia Model, Ashli A. Santos

Biomedical Engineering

Peripheral arterial occlusive disease (PAOD) occurs when there is a narrowing or blockage – usually a buildup of plaque - within the arteries that reduces blood flow to tissues which can chronic ischemia. As with most diseases, early detection and proactive treatment are important to maximize prognosis. Exercise effectively treats PAOD, but due to ischemic pain in the limbs, or intermittent claudication (IC), exercise can become painful and difficult. Due to the buildup of plaque, occlusions create an ischemic environment that changes the pressure distribution in collateral networks and increases the shear stress in transverse collaterals. Those two responses signal …


Isolation And Culture Of Myofiber-Derived Cells From The Extensor Digitorum Longus Muscle, Ethan M. Tietze Jun 2017

Isolation And Culture Of Myofiber-Derived Cells From The Extensor Digitorum Longus Muscle, Ethan M. Tietze

Biomedical Engineering

Peripheral arterial occlusive disease (PAOD) involves distal artery occlusion by atherosclerotic plaques, which restricts blood flow and leads to ischemia in downstream tissues. Increased blood flow through preexisting collateral vessels leads to increased shear stress that triggers an outward remodeling of the vessel called arteriogenesis. In some cases this natural compensatory mechanism is able to sufficiently restore blood flow following arterial occlusion. However, for many individuals this process is insufficient to relieve peripheral ischemia, and patients experience intermittent claudication, or limb pain with locomotion or exercise. Without treatment, reduced blood flow can lead to tissue necrosis and potentially amputation. The …


Microvascular Topology And Intravascular Endothelial Cell Labeling In The Gracilis Anterior Muscle Of Balb/C Mice, Paul Heckler Ii Aug 2014

Microvascular Topology And Intravascular Endothelial Cell Labeling In The Gracilis Anterior Muscle Of Balb/C Mice, Paul Heckler Ii

Biomedical Engineering

Peripheral arterial occlusive disease (PAOD) affects approximately 200 million individuals globally. The major underlying cause of PAOD is an inflammatory disease known as atherosclerosis, which results from the build-up of low-density lipoproteins (LDL) in the sub-intimal space. This initiates a complex cascade of events that lead to plaque growth. Plaque growth can then expand into the lumen of the vessel and result in occlusion and/or thrombosis. Symptoms of the disease can include claudication, ulcers, and/or gangrene, although many patients are asymptomatic. Similar to other forms of ischemic disease, risk factors for PAOD include hypertension, diabetes, and smoking. Common treatments include …


Functional Vasodilation Is Impaired In Arterialized Capillaries In The Spinotrapezius, Joshua P. Cutts Jun 2014

Functional Vasodilation Is Impaired In Arterialized Capillaries In The Spinotrapezius, Joshua P. Cutts

Biomedical Engineering

Ischemic diseases are the result of atherosclerotic plaques, which occlude conduit arteries. Ischemic disease in different tissues leads to different conditions, such as coronary artery disease (CHD), cerebrovascular disease (CVD), and peripheral arterial occlusive disease (PAOD). Patient vasculature architecture is variable; some patients having many collateral vessels, which are connect one arterial branch to another, and readily serve as natural bypass routes to atherosclerotic occlusions, to enlarge and provide blood flow to tissue distal to the occlusion. Patients with many natural collateral vessels are ischemia protected. Unfortunately, not all patients have collateral arterioles to remodel into conduit vessels and provide …


Development And Implementation Of Assessment Methods For Tissue-Engineered Blood Vessel Mimics, Tanner Stevenson Jun 2014

Development And Implementation Of Assessment Methods For Tissue-Engineered Blood Vessel Mimics, Tanner Stevenson

Biomedical Engineering

Coronary Artery Disease (CAD), the most prevalent form of heart disease, is the result of clogged or damaged coronary arteries and claims around 380,000 Americans annually. A common treatment for CAD involves placing a stent into the artery in order to open the lumen and support the native tissue—a procedure that drastically reduces patient recovery times in comparison to heart bypass surgery. However, stents do not always interact well with the body and require additions such as surface coatings or drug elution in order for additional biocompatibility. These additions necessitate extensive in vitro and in vivo testing which are expensive …


Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson Jun 2013

Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson

Biomedical Engineering

Poly(lactic-co-glycolic acid) (PLGA) is one of the most commonly used copolymers for electrospinning in tissue engineering applications. However, most research has not focused on the copolymer itself in regards to how long it can be used effectively and if varying the concentrations of polylactic acid (PLA) and polyglycolic acid (PGA) affect the resulting properties. Electrospinning is the method we use to create the three-dimensional constructs, or “scaffolds”, for the blood vessel mimic (BVM) in the tissue engineering lab. The aim of our project was to investigate if the morphology and mechanical properties of the scaffolds changed over time when they …


Investigating The Reproducibility Of The Current Bvm Protocol, Corey Gross Mar 2013

Investigating The Reproducibility Of The Current Bvm Protocol, Corey Gross

Biomedical Engineering

Coronary Artery Disease (CAD) is responsible for 1 death every minute in the US. Angioplasty with the implantation of stents is a common treatment method for CAD. Although there is a variety of stents currently on the market, there is still a need to develop new types for different pathologic conditions. Preliminary assessment of the physiological response to new stents is needed as they are being developed. The FDA approval process implemented today is a long, tedious path with a range of testing methods that include static in vitro testing and high-cost animal testing. Tissue engineered blood vessels have been …


Development Of A Protocol To Measure Gene Expression In The Mouse Tibia, Daniel Hoover Jun 2012

Development Of A Protocol To Measure Gene Expression In The Mouse Tibia, Daniel Hoover

Biomedical Engineering

Numerous molecular factors active in bone tissue direct fracture repair and remodeling which can be altered by disease conditions such as Peripheral Arterial Disease (PAD) and Osteoporosis. Methods of molecular biology are commonly applied to investigate the expression and role of these molecular factors. This project presents a robust three-step protocol for examining gene expression in the mouse tibia. The protocol begins with isolating RNA from a flash frozen tibia sample. The isolated RNA is reverse transcribed into cDNA. Finally, PCR is performed to indentify expressed genes. Establishing this protocol will allow further research into the mechanisms of bone remodeling …


Development And Characterization Of Plga And Eptfe Blood Vessel Mimics Using Gene Expression Analysis, Michael Gibbons, Sarah Ur Jun 2012

Development And Characterization Of Plga And Eptfe Blood Vessel Mimics Using Gene Expression Analysis, Michael Gibbons, Sarah Ur

Biomedical Engineering

Tissue engineered blood vessels (TEBV’s) have the potential to act not only as a replacement for diseased vessels, but also as a testing platform for intravascular devices such as stents. To this end, the goal of this study was to develop protocols for the construction of TEBV’s composed of human vascular cells and either expanded polytetrafluoroethylene (ePTFE) or poly-lactic-co-glycolic acid (PLGA), as well as a protocol for gene expression in those TEBV’s. Initial experiments involved only human umbilical vein endothelial cells (HUVEC’s), but after low cell confluency and spreading in single-sodded vessels a second cell type, human umbilical vein smooth …


Evaluation Of Decellularization Procedures For Porcine Arteries, Charles Clapp Apr 2012

Evaluation Of Decellularization Procedures For Porcine Arteries, Charles Clapp

Biomedical Engineering

Coronary artery disease has become the leading cause of death in the United States, with over 425,000 deaths in 2006. Stenting has evolved into the preferred preventative technique for myocardial infarction by opening up an occluded artery, due to its low invasiveness compared to the alternative of coronary artery bypass grafting. Bare metal stents have been improved by coating with anti-proliferative drugs to advance their effects, but even drug eluting stents still have a risk of restenosis, thrombus formation, and necessary revascularization. Continual advancement in stent design necessitates faster, effective pre-clinical evaluation techniques. Kristen Cardinal, Ph.D., developed the blood vessel …


A Novel In-House Design Of A Bioreactor For The Modeling Of An In Vitro Blood Brain Barrier Model, Ian Mahaffey Jan 2012

A Novel In-House Design Of A Bioreactor For The Modeling Of An In Vitro Blood Brain Barrier Model, Ian Mahaffey

Biomedical Engineering

The blood brain barrier is the protector of the central nervous system and a physical barrier that functions to regulate the substances that can pass in and out of the brain; it is the function and integrity of this system that keeps the homeostasis of the central nervous system. Yet this shield against foreign invaders in the blood also prevents drugs designed for treatment of various ailments of the central nervous system from reaching their target in the brain. Developing drugs that can pass through this barrier, and understanding it’s function has become an area of increasing interest. Many researchers …


Impaired Resistance Artery Reactivity Following Arteriogenesis, Michael (Mike) Machado Sep 2011

Impaired Resistance Artery Reactivity Following Arteriogenesis, Michael (Mike) Machado

Biomedical Engineering

No abstract provided.


Development Of An In-Vitro Hyperglycemic Tissue Engineered Blood Vessel Mimic, Brian C. Wong Jun 2011

Development Of An In-Vitro Hyperglycemic Tissue Engineered Blood Vessel Mimic, Brian C. Wong

Biomedical Engineering

No abstract provided.


Characterization Of Bioreactor System For Tissue Engineered Blood Vessels, Kasim Shah Jan 2011

Characterization Of Bioreactor System For Tissue Engineered Blood Vessels, Kasim Shah

Biomedical Engineering

No abstract provided.


Characterization And Analysis Techniques Of A Dynamic In Vitro Blood-Brain Barrier Model, Ryan Everett Woodhouse Dec 2010

Characterization And Analysis Techniques Of A Dynamic In Vitro Blood-Brain Barrier Model, Ryan Everett Woodhouse

Biomedical Engineering

The blood-brain barrier (BBB) is responsible for maintaining the sensitive environment required by the brain. Although the BBB is necessary for proper functioning of the brain, it acts as an obstacle for doctors attempting to treat neurological disease. For a drug to act upon the brain, it must first pass through the discriminating BBB. For this reason, much research has been performed in recent years in order to create an in vitro model of the BBB on which drugs targeted for the central nervous system may be tested. The main goal of this project is to create an in vitro …