Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad May 2019

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing …


Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li Sep 2018

Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li

Electronic Thesis and Dissertation Repository

Tissue engineering aims to regenerate damaged and deceased tissue by combining cells with scaffold made from an appropriate biomaterial and providing a conducive environment to guide cell growth and the formation or regeneration of new tissue or organ. While collagen, an important material of the extracellular matrix (ECM), is a natural choice as a scaffold biomaterial, the conducive environment can only be created by having the ability to control the geometry, organization, structural and mechanical properties of the scaffold. Moreover, degradability and degradation rate control of the scaffold has to be taken into consideration too. In this work, we aim …


Oriented Collagen And Applications Of Waveguide Evanescent Field Scattering (Wefs) Microscopy, Qamrun Nahar Apr 2014

Oriented Collagen And Applications Of Waveguide Evanescent Field Scattering (Wefs) Microscopy, Qamrun Nahar

Electronic Thesis and Dissertation Repository

In this thesis, Waveguide Evanescent Field Scattering (WEFS) microscopy is developed as a non-invasive, label-free live cell imaging technique. This new high-contrast imaging can be employed to study the first hundred nanometers from the surface as it utilizes the evanescent field of a waveguide as the illumination source. Previously, waveguide evanescent field fluorescence (WEFF) microscopy was developed as a fluorescence imaging technique comparable to the total internal reflection fluorescent (TIRF) microscopy. Both the WEFF and WEFS technique utilizes the same fundamental concepts except in WEFS microscopy imaging is accomplished without the application of any fluorescent labeling. In this work, bacterial …


Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li Aug 2013

Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li

Electronic Thesis and Dissertation Repository

In tissue engineering, the scaffold plays a critical role in guiding and supporting cells to function and grow optimally. The electrospun nanofibrous scaffold can serve as a near ideal substrate for tissue engineering because it has high surface area and the three-dimensional interconnected porous network can enhance cell attachment and proliferation. Core-shell nanofibrous scaffolds produced with coaxial electrospinning allow bioactive molecule encapsulation to improve cell adhesion, mediate and promote the proper signaling among the cells for their functioning and growth. In the current study, core-shell collagen nanofibers were fabricated via coaxial electrospinning with horizontal and vertical configurations. Core-shell nanofibers with …


Nanomechanics Of Electrospun Nanofibres For Tissue Engineering Of The Tympanic Membrane, Sara Makaremi Dec 2012

Nanomechanics Of Electrospun Nanofibres For Tissue Engineering Of The Tympanic Membrane, Sara Makaremi

Electronic Thesis and Dissertation Repository

The Tympanic Membrane (TM), also known as the eardrum, includes layers of organized collagen nanofibres which play an essential role in sound transmission. Perforations that are caused by infection or accident must be repaired in order to restore hearing. Tympanoplasty is performed using grafts that are prepared from bladder, cartilage, temporal fascia and cadaveric skin. However, since mechanical properties of these grafts do not match those of the original TM, normal hearing is not fully restored. The goal of this study is to develop nanofibrous scaffolds for tissue engineering of the TM in order to circumvent the complications addressed with …