Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Louisville

Molecular, Cellular, and Tissue Engineering

Nanoparticles

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Tumor Targeting Gold Nanoparticles For Delivery Of Rna And Dna Oligonucleotide Therapies For Glioblastoma., Nicholas Allen May 2023

Tumor Targeting Gold Nanoparticles For Delivery Of Rna And Dna Oligonucleotide Therapies For Glioblastoma., Nicholas Allen

Electronic Theses and Dissertations

Glioblastoma (GBM) brain tumors are highly aggressive gliomas due to genetic and cellular heterogeneity. Current GBM treatment consists of surgical resection of the tumor combined with radio- or chemo-therapies. While these treatments have increased the life expectancy for GBM patients up to 20 months, they have had little effect on the 5-year survival rate. The complex cellular and genetic composition of the tumor makes current treatments less effective long term. One approach to developing more effective GBM treatments is to customize nanoparticle-based drug delivery systems that can directly target the aberrant gene expression patterns within a particular GBM tumor. Delivery …


Plga-Modified Nanoparticles For The Treatment Of Hypo-Vascularized Hpv-Related Cervical Cancers., Lee B. Sims May 2018

Plga-Modified Nanoparticles For The Treatment Of Hypo-Vascularized Hpv-Related Cervical Cancers., Lee B. Sims

Electronic Theses and Dissertations

A major challenge associated with delivery of active agents in the female reproductive tract (FRT) is the ability of agents to efficiently diffuse through the cervicovaginal mucosa (CVM) and reach the underlying sub-epithelial immune cell layer and vasculature. A variety of drug delivery vehicles have been employed to improve the delivery of agents across the CVM and offer the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract. Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular, …