Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Louisville

Biomaterials

Bacterial vaginosis

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Release Kinetics Of Metronidazole From 3d Printed Silicone Scaffolds., Sydney E. Herold May 2022

Release Kinetics Of Metronidazole From 3d Printed Silicone Scaffolds., Sydney E. Herold

Electronic Theses and Dissertations

Sustained local administration of active agents has been proposed to cure bacterial vaginosis in the female reproductive tract and restore the resident bacterial fauna. Bioprinting has shown promise for the development of systems for local agent delivery. In contrast to oral ingestion, agent release kinetics can be fine-tuned by bioprinting specialized scaffold designs tailored for particular treatments while enhancing dosage effectiveness via localized sustained release. It has been challenging to establish scaffold properties for sustained release as a function of fabrication parameters. Towards this goal, we evaluate 3D printed scaffold formulation and feasibility to sustain release of metronidazole, a representative …


Fabrication And Characterization Of Lactobacillus Crispatus Containing Bioprints For Bacterial Vaginosis Application., Anthony J. Kyser May 2022

Fabrication And Characterization Of Lactobacillus Crispatus Containing Bioprints For Bacterial Vaginosis Application., Anthony J. Kyser

Electronic Theses and Dissertations

Bacterial vaginosis (BV) is a condition in which healthy lactobacilli are replaced by an overabundance of pathogenic bacteria in the female reproductive tract. Current antibiotic treatments often fail to “cure” infection, resulting in recurrence in more than 50% of women, 6 months post-treatment. Recently, probiotics have demonstrated promise to restore vaginal health; however, as with other active agents, delivery requires once-to-twice daily administration. Recently, three-dimensional (3D)-bioprinting has enabled the fabrication of well-defined cell-laden architectures with tunable agent release, thereby presenting a novel approach with which to deliver probiotics. One promising bioink, gelatin alginate, was selected for study, due to its …


The Use Of Nanoparticles And Electrospun Fibers For Intravaginal Delivery To Treat Viral And Bacterial Infections And Electrophysiological Measurements Of Synthetic Chloride Channels., Farnaz Minooei Dec 2020

The Use Of Nanoparticles And Electrospun Fibers For Intravaginal Delivery To Treat Viral And Bacterial Infections And Electrophysiological Measurements Of Synthetic Chloride Channels., Farnaz Minooei

Electronic Theses and Dissertations

Female reproductive viral and bacterial infections affect millions of women worldwide. Given the diversity and magnitude of these unmet reproductive health challenges, topical administration of antiretrovirals (ARVs) and antibiotics have emerged as promising approaches to maintain and restore reproductive health. However, currently available intravaginal dosage forms often suffer from low user adherence and the need for frequent, daily administration to achieve therapeutic effect. To address these challenges, the broad goal of this research was to focus on the development of new localized nanoparticle (NP) and electrospun fiber dosage forms to prolong the delivery and enhance the efficacy of active agents …