Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Michigan Technological University

Biology and Biomimetic Materials

Tissue adhesive

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Studying Mass And Mechanical Property Changes During The Degradation Of A Bioadhesive With Mass Tracking, Rheology And Magnetoelastic (Me) Sensors, Zhongtian Zhang Jan 2018

Studying Mass And Mechanical Property Changes During The Degradation Of A Bioadhesive With Mass Tracking, Rheology And Magnetoelastic (Me) Sensors, Zhongtian Zhang

Dissertations, Master's Theses and Master's Reports

In this research, the degradable polymer 4-arm poly (ethylene glycol)-glutaric acid-dopamine (PEG-GA-DM4) was synthesized. The degradation behavior of crosslinked PEG-GA-DM4 bioadhesive was studied with mass tracking, oscillatory rheology, and magnetoelastic (ME) sensors. Changes in mechanical properties were correlated with both dry mass and wet mass changes during the degradation. The results indicate that the loss of mechanical property in the bioadhesive can take place without losing the dry mass. The mass loss profile cannot describe the degradation behavior completely. In addition to studying the degradation of PEG-GA-DM4, this research also confirms the application of ME …


Design Of Robust Hydrogel Based On Mussel-Inspired Chemistry, Yuan Liu Jan 2017

Design Of Robust Hydrogel Based On Mussel-Inspired Chemistry, Yuan Liu

Dissertations, Master's Theses and Master's Reports

The structure of catechol is found in mussel adhesive proteins and contributed to both wet-resistant adhesion and cohesive curing of these proteins. A synthetic nano-silicate, Laponite was incorporated into catechol-containing hydrogels and the hydrogel network-bound catechol formed strong reversible interfacial interaction with Laponite. The contribution of incorporated catechol-Laponite reversible interfacial interactions to the mechanics of hydrogels constructed by different strategies was studied. In the first strategy, Laponite and catechol were introduced into the double network hydrogel (DN) via the free radical co-polymerization of a catechol-containing monomer, backbone monomer, and crosslinker. The introduction of catechol-Laponite interactions significantly improved the compressive strength …