Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Mechanical Engineering

Microfluidics

2023

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

The Development Of A Primer Payload With Microparticles For Uti Pathogen Identification Using Polythymidine- Modified Lamp Primers In Droplet Lamp, Jonas Otoo May 2023

The Development Of A Primer Payload With Microparticles For Uti Pathogen Identification Using Polythymidine- Modified Lamp Primers In Droplet Lamp, Jonas Otoo

KGI Theses and Dissertations

Nucleic acid amplification tests (NAATs) are among the diagnostic tests with the highest sensitivity and specificity. However, they are more complex to develop than other diagnostic tests such as biochemical tests and lateral flow immunoassay tests. Polymerase chain reaction (PCR) is the gold standard for NAATs. PCR requires thermal cycling to achieve clonal amplification of the target pathogen DNA for diagnosis. Thermal cycling poses a challenge in the development of PCR diagnostics for point-of-care (POC) settings. Loop-mediated isothermal amplification (LAMP) offers an isothermal method for NAATs diagnostics. The advancement of the microfluidics field significantly enhances the development of LAMP diagnostics …


A 3d Bioprinted Hydrogel Microfluidic Device For Screening Applications, Anant Bhusal Jan 2023

A 3d Bioprinted Hydrogel Microfluidic Device For Screening Applications, Anant Bhusal

Theses and Dissertations

The microfluidic enabled the integration of engineered miniaturized tissue models for drug screening. Conventional polydimethylsiloxane or plastic-based devices require multiple fabrication steps, which are challenging. We developed a 3D bioprinting approach to create prototypes of hydrogel-based multi-material microfluidic devices integrated with microtissue models. The approach utilizes poly(ethylene glycol) diacrylate and gelatin-methacryloyl to create microfluidic chips using multi-material bioprinting capacity with a high resolution of 15µm on x-y and 50µm on the z-axis and post-printing viability of >90%. We demonstrated easy regulation of stiffness from 24±5 kPa to 1,180±9 kPa and burst pressure from 16±1kPa to 256±19 kPa in the chip …