Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego May 2023

Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego

Electrical & Computer Engineering Theses & Dissertations

World Health Organization (WHO) data show that around 684,000 people die from falls yearly, making it the second-highest mortality rate after traffic accidents [1]. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. In light of the recent widespread adoption of wearable sensors, it has become increasingly critical that fall detection models are developed that can effectively process large and sequential sensor signal data. Several researchers have recently developed fall detection algorithms based on wearable sensor data. However, real-time fall detection remains challenging because of the wide …


Full-Body Biomechanical Characterization Of Children With Hypermobile Ehlers-Danlos Syndrome During Gait And Activities Of Daily Living, Anahita Alahmoradiqashqai May 2022

Full-Body Biomechanical Characterization Of Children With Hypermobile Ehlers-Danlos Syndrome During Gait And Activities Of Daily Living, Anahita Alahmoradiqashqai

Theses and Dissertations

Hypermobile Ehlers-Danlos syndrome (hEDS) is an inherited connective tissue disorder, often under-diagnosed, and presenting with frequent chronic pain and severe musculoskeletal symptoms that can drastically reduce the quality of life during one’s life span. While there are limited quantitative approaches in the literature on adult movements, the biomechanics of movements during activities of daily living (ADLs) in children have not been investigated comprehensively. Therefore, the primary purpose of this dissertation was to characterize the biomechanics of the musculoskeletal system and investigate the biomechanics of hEDS by quantifying joint dynamics and muscle activations during ADLs and gait in the pediatric population. …


Framework For The Evaluation Of Perturbations In The Systems Biology Landscape And Inter-Sample Similarity From Transcriptomic Datasets — A Digital Twin Perspective, Mariah Marie Hoffman Jan 2022

Framework For The Evaluation Of Perturbations In The Systems Biology Landscape And Inter-Sample Similarity From Transcriptomic Datasets — A Digital Twin Perspective, Mariah Marie Hoffman

Dissertations and Theses

One approach to interrogating the complexities of human systems in their well-regulated and dysregulated states is through the use of digital twins. Digital twins are virtual representations of physical systems that are descriptive of an individual's state of health, an object fundamentally related to precision medicine. A key element for building a functional digital twin type for a disease or predicting the therapeutic efficacy of a potential treatment is harmonized, machine-parsable domain knowledge. Hypothesis-driven investigations are the gold standard for representing subsystems, but their results encompass a limited knowledge of the full biosystem. Multi-omics data is one rich source of …


Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard May 2018

Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard

Electronic Theses and Dissertations

Electrophysiological measurements have been used in recent history to classify instantaneous physiological configurations, e.g., hand gestures. This work investigates the feasibility of working with changes in physiological configurations over time (i.e., longitudinally) using a variety of algorithms from the machine learning domain. We demonstrate a high degree of classification accuracy for a binary classification problem derived from electromyography measurements before and after a 35-day bedrest. The problem difficulty is increased with a more dynamic experiment testing for changes in astronaut sensorimotor performance by taking electromyography and force plate measurements before, during, and after a jump from a small platform. A …


Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li Jul 2016

Machine Learning Methods For Medical And Biological Image Computing, Rongjian Li

Computer Science Theses & Dissertations

Medical and biological imaging technologies provide valuable visualization information of structure and function for an organ from the level of individual molecules to the whole object. Brain is the most complex organ in body, and it increasingly attracts intense research attentions with the rapid development of medical and bio-logical imaging technologies. A massive amount of high-dimensional brain imaging data being generated makes the design of computational methods for efficient analysis on those images highly demanded. The current study of computational methods using hand-crafted features does not scale with the increasing number of brain images, hindering the pace of scientific discoveries …