Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Life Sciences

2015

Institution
Keyword
Publication

Articles 1 - 30 of 34

Full-Text Articles in Biomedical Engineering and Bioengineering

The Role Of Bone Sialoprotein In Periodontal Tissue Development And Bone Repair, Yohannes Soenjaya Dec 2015

The Role Of Bone Sialoprotein In Periodontal Tissue Development And Bone Repair, Yohannes Soenjaya

Electronic Thesis and Dissertation Repository

Bone development and repair involve complex processes that include interaction between cells and their surrounding matrix. In the body, bone sialoprotein (BSP) expression is up-regulated at the onset of mineralization. BSP is a multifunctional acidic phosphoprotein with collagen-binding, hydroxyapatite nucleating, and integrin recognition (RGD sequence, which is important for cell-attachment and signaling) regions. Mice lacking BSP expression (Bsp-/-), exhibit a bone phenotype with reductions in bone mineral density, bone length, osteoclast activation, and impaired bone healing. This thesis examined the role of BSP in tooth development and also its potential use as a therapeutic reagent for bone …


Investigation Of The Inherent Chemical, Structural, And Mechanical Attributes Of Bio-Engineered Composites Found In Nature: Alligator Gar’S Exoskeleton Fish Scales, Wayne Derald Hodo Dec 2015

Investigation Of The Inherent Chemical, Structural, And Mechanical Attributes Of Bio-Engineered Composites Found In Nature: Alligator Gar’S Exoskeleton Fish Scales, Wayne Derald Hodo

Graduate Theses and Dissertations

The U.S. Army has determined a huge cost savings of up to 51% can be accomplished by reducing the gross vehicle weight, for their personnel carrier, by 33%. To cut cost, composite materials are needed. Man-made composites can have superior material properties (high-strength, high-fracture toughness, and lightweight), but they are prone to delamination at the glued-layered interface. In contrast, fish scale is a natural composite that has the same material properties and, additionally, tend not to delaminate.

The focus of this study was to learn how nature integrates hard and soft materials at each length scale to form a layered …


Storage Of Round And Square Switchgrass Bales: Effect Of Storage Time And Fungal Inoculation On Saccharification Efficiency, Noaa Frederick Dec 2015

Storage Of Round And Square Switchgrass Bales: Effect Of Storage Time And Fungal Inoculation On Saccharification Efficiency, Noaa Frederick

Graduate Theses and Dissertations

To produce fermentable sugars from lignocellulosic biomass feedstock, severe pretreatment conditions are needed (either high acid concentration, temperature, or retention times). High severities can produce toxic byproducts which inhibit enzymatic hydrolysis or fermentation. In order to reduce pretreatment severities (and thus increase enzyme and fermentation efficiency), the white-rot fungus Pleurotus ostreastus was seeded into square and round bales of Kanlow switchgrass (Panicum virgastum L.) and left in the field over a period of 9 month. The laccase producing fungus is believed to selectively degrade lignin, a common plant structural polymer, which can function as an enzymatic inhibitor. Samples were taken …


Removal Of Trace Organic Compounds In Domestic Wastewater Using Recirculating Packed-Bed Media Filters, Brittani Nikole Perez Dec 2015

Removal Of Trace Organic Compounds In Domestic Wastewater Using Recirculating Packed-Bed Media Filters, Brittani Nikole Perez

Masters Theses

Pharmaceuticals and personal care products (PPCPs) are commonly detected in the environment resulting from their survival from conventional wastewater treatment systems. More information is needed about the fate and transfer of these trace organic compounds in domestic wastewater and their associated risks so that efficient strategies for their removal can be developed for both large/small scale treatment systems. This study aimed to determine whether onsite wastewater treatment systems were capable of providing PPCP removal, in addition to quantifying different forms of removal (biodegradation/sorption). A column study was constructed to determine the removal efficiencies of 3 target PPCPs, endocrine disrupting compound …


Compounds Released From Biomass Deconstruction: Understanding Their Effect On Cellulose Enzyme Hydrolysis And Their Biological Activity, Angele Djioleu Dec 2015

Compounds Released From Biomass Deconstruction: Understanding Their Effect On Cellulose Enzyme Hydrolysis And Their Biological Activity, Angele Djioleu

Graduate Theses and Dissertations

The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in …


Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare Nov 2015

Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare

Masters Theses

The extracellular matrix (ECM) provides mechanical and biochemical support to tissues and cells. It is crucial for cell attachment, differentiation, and migration, as well as for ailment-associated processes such as angiogenesis, metastases and cancer development. An approach to study these phenomena is through emulation of the ECM by synthetic gels constructed of natural polymers, such as collagen and fibronectin, or simple but tunable materials such as poly(ethylene glycol) (PEG) crosslinked with short peptide sequences susceptible to digestion by metalloproteases and cell-binding domains. Our lab uses PEG gels to study cell behavior in three dimensions (3D). Although this system fosters cell …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


The Application Of The Ultrafine Technology In Improving The Biocompatibility And Osteo-Inductivity Of Dental Implants, Nicholas Y. Hou Aug 2015

The Application Of The Ultrafine Technology In Improving The Biocompatibility And Osteo-Inductivity Of Dental Implants, Nicholas Y. Hou

Electronic Thesis and Dissertation Repository

Dental implants are very effective medical devices. However, although stable, the conventional titanium implants are not very bioactive which in some instances could reduce their efficacy. This thesis described the research progress of using polymeric ultrafine-particles with bioactive additives to enrich the surface of titanium substrate, thereby increasing the biocompatibility and osteo-inductivity of the biomaterial. During this doctoral project, three different types of polymers were examined, initially the conventional polyester, and later the novel epoxy as well as the epoxy/polyester hybrid polymers. Physical characterizations confirmed that all of the coating powders were ultrafine particles, and homogeneous surfaces were constructed from …


Microengineering The Neural Tube, Christopher Demers Aug 2015

Microengineering The Neural Tube, Christopher Demers

Electronic Theses and Dissertations

Early embryonic development is a complex and highly regulated orchestra of instructive cues that collectively guide naïve stem cells towards progressively more specialized fates. In the neural tube, the precursor structure to the brain and spinal cord, these signals emanate from ‘organizing centers’ surrounding the neural tube. These organizing centers send out soluble cues or morphogens that diffuse tens to hundreds of microns to recipient cells residing in the neural tube. Re-creating this dynamic landscape of cues in vitro is impossible using standard cell culture tools and techniques. However, microfluidics is perfectly suited to fill this gap, allowing precise control …


Synthesis, Functionalization, And Characterization Of Metallic And Organic Nanoparticles For Biomedical Applications, Christopher Brian Sylvester May 2015

Synthesis, Functionalization, And Characterization Of Metallic And Organic Nanoparticles For Biomedical Applications, Christopher Brian Sylvester

Honors Theses

No abstract provided.


Scattering Correction Methods Of Infrared Spectra Using Graphics Processing Units, Asher Imtiaz May 2015

Scattering Correction Methods Of Infrared Spectra Using Graphics Processing Units, Asher Imtiaz

Theses and Dissertations

Fourier transform infrared (FTIR) microspectroscopy has been used for many years as a technique that provides distinctive structure-specific infrared spectra for a wide range of materials (e.g., biological (tissues, cells, bacteria, viruses), polymers, energy related, composites, minerals). The mid-infrared radiation can strongly scatter from distinct particles, with diameters ranging between 2-20 micrometer. Transmission measurements of samples (approximately 100 micrometers x 100 micrometers x 10 micrometers) with distinct particles. will be dominated by this scattering (Mie scattering). The scattering distorts the measured spectra, and the absorption spectra appear different from pure absorbance spectra. This thesis presents development and implementation of two …


Selection Methods For Genetically-Modified T Cells: In Support Of Translational Therapy, David Rushworth May 2015

Selection Methods For Genetically-Modified T Cells: In Support Of Translational Therapy, David Rushworth

Dissertations & Theses (Open Access)

T cells are blood cells which organize the immune system of the host. These cells are necessary for the host to respond appropriately to threats from foreign organisms and cancerous growth. However, in the case of certain infections and cancer, T cells are unable to respond appropriately to a threat and establish immunity. This leads to disease when the infection or cancer is not sufficiently eliminated. On the other hand, T cells can lack tolerance for healthy tissue and perceive healthy tissue as infected. The ensuing over-reactive immune response also leads to disease. A delicate balance must exist between immunity …


Optimizing The Neural Response To Electrical Stimulation And Exploring New Applications Of Neurostimulation, Kurt Yuqin Qing Apr 2015

Optimizing The Neural Response To Electrical Stimulation And Exploring New Applications Of Neurostimulation, Kurt Yuqin Qing

Open Access Dissertations

Electrical stimulation has been successful in treating patients who suffer from neurologic and neuropsychiatric disorders that are resistant to standard treatments. For deep brain stimulation (DBS), its official approved use has been limited to mainly motor disorders, such as Parkinson's disease and essential tremor. Alcohol use disorder, and addictive disorders in general, is a prevalent condition that is difficult to treat long-term. To determine whether DBS can reduce alcohol drinking in animals, voluntary alcohol consumption of alcohol-preferring rats before, during, and after stimulation of the nucleus accumbens shell were compared. Intake levels in the low stimulus intensity group (n=3, 100&mgr;A …


The Pathological Role Of Acrolein In Experimental Autoimmune Encephalomyelitis And Multiple Sclerosis, Melissa A. Tully Apr 2015

The Pathological Role Of Acrolein In Experimental Autoimmune Encephalomyelitis And Multiple Sclerosis, Melissa A. Tully

Open Access Dissertations

Multiple sclerosis (MS) is an autoimmune demyelinating neuropathy that affects nearly 2.5 million people worldwide. Despite substantial efforts, few treatments are currently available largely due to limited knowledge of pathogenic mechanisms underlying the disease. The immune-inflammatory nature of the pathology has prompted investigation of the role of oxidative stress in disease development and progression; however targeting reactive oxygen species for neutralization has had marginal success therapeutically, suggesting that an alternate oxidative stress-related target would prove beneficial. Recently, our lab has implicated acrolein, a highly reactive aldehyde that is both a byproduct and catalyst of lipid peroxidation, as a potential therapeutic …


A Novel In Vivo Tumor Oxygen Profiling Assay: Combining Functional And Molecular Imaging With Multivariate Mathematical Modeling, Chung-Wein Lee Apr 2015

A Novel In Vivo Tumor Oxygen Profiling Assay: Combining Functional And Molecular Imaging With Multivariate Mathematical Modeling, Chung-Wein Lee

Open Access Dissertations

Purpose: The objective of this study is to develop and test a novel high spatio-temporal in vivo assay to quantify tumor oxygenation and hypoxia. The assay implements a biophysical model of oxygen transport to fuse parameters acquired from in vivo functional and molecular imaging modalities. ^ Introduction: Tumor hypoxia plays an important role in carcinogenesis. It triggers pathological angiogenesis to supply more oxygen to the tumor cells and promotes cancer cell metastasis. Preclinical and clinical evidence show that anti-angiogenic treatment is capable of normalizing the tumor vasculature both structurally and functionally. The resulting normalized vasculature provides a more efficient and …


Cerebrovascular Reactivity Alterations Due To Subconcussive Repetitive Head Trauma In Asymptomatic High School Football Players, Chetas Joshi Apr 2015

Cerebrovascular Reactivity Alterations Due To Subconcussive Repetitive Head Trauma In Asymptomatic High School Football Players, Chetas Joshi

Open Access Theses

Chronic neurological damage as a result of chronic repetitive head trauma is a major concern for football athletes today. Repetitive concussions have been linked to many neurological disorders. Recently, it has been reported that repetitive subconcussive events can contribute to long-term neurodegeneration. For these reasons, it is important to understand the effect repetitive subconcussive head trauma has on brain health in young athletes. Past research has demonstrated that cerebrovascular reactivity (CVR), an important mediator of cerebrovascular regulation, is impaired following mild traumatic brain injury (mTBI). This impairment increases susceptibility to secondary injury following mTBI. In this study, Breath-Hold (BH) task …


Individual Analysis Of T2*-Weighted Gradient Echo Imaging In Asymptomatic And Symptomatic Athletes, Xianglun Mao Apr 2015

Individual Analysis Of T2*-Weighted Gradient Echo Imaging In Asymptomatic And Symptomatic Athletes, Xianglun Mao

Open Access Theses

Mild traumatic brain injury (mTBI), is a commonly occurred sports-related injury, especially in contact sports like football and soccer. Hemorrhage will appear as hypointense lesions on T2 *-weighted images, resulting from mTBI. Thus, T 2*-weighted gradient echo pulse sequence can be used to generate magnitude susceptibility-weighted (SW) images, and to further detect negative intensity changes of different regions of interests (ROIs) inside human brains. Our goal was to investigate how the ROI-specific intensity changes in each individual sports athlete over a single competition season and to interrogate whether these changes are correlated with repetitive subconcussive or …


Magnetic Manipulation And Multimodal Imaging For Single Cell Direct Mechanosensing, Robert L. Wilson Apr 2015

Magnetic Manipulation And Multimodal Imaging For Single Cell Direct Mechanosensing, Robert L. Wilson

Open Access Theses

The study of internal mechanics of single cells is paramount to understand mechanisms of mechanoregulation. External loading and cell-mediated force generation result in changes in cell shape, rheology, and the deformation of subcellular structures such as the nucleus. Moreover, alterations in the processes that regulate these responses have been further correlated to specific pathologies. Cellular deformation is often studied through application of forces in the environment of the cell, relying on strain and stress transfer through focal adhesions and the cytoskeletal system. However, the transfer of these external forces to internal mechanics can introduce uncertainties in the interpretation of subcellular …


Plasma Activated Air Mediates Gene Transfer, Chelsea M. Edelblute Apr 2015

Plasma Activated Air Mediates Gene Transfer, Chelsea M. Edelblute

Biological Sciences Theses & Dissertations

Cold plasma is produced when strong applied electric fields accelerate free electrons, which dissociate, excite, or ionize gaseous molecules [1]. The deposition of ions from the plasma source is dependent on power generation, input gas composition, and gas flow rate. In the presence of reactive species, the membrane of eukaryotic cells is compromised allowing for otherwise impermeant molecules, such as DNA, to enter the inner-cell milieu [2].

The efficacy of a novel cold plasma reactor based on shielded sliding discharge for the delivery of plasmid DNA was assessed. The device is entirely non-contact, wherein the plasma never directly touches the …


Multichannel Characterization Of Brain Activity In Neurological Impairments, Yalda Shahriari Apr 2015

Multichannel Characterization Of Brain Activity In Neurological Impairments, Yalda Shahriari

Biomedical Engineering Theses & Dissertations

Hundreds of millions of people worldwide suffer from various neurological and psychiatric disorders. A better understanding of the underlying neurophysiology and mechanisms for these disorders can lead to improved diagnostic techniques and treatments. The objective of this dissertation is to create a novel characterization of multichannel EEG activity for selected neurological and psychiatric disorders based on available datasets. Specifically, this work provides spatial, spectral, and temporal characterizations of brain activity differences between patients/animal models and healthy controls, with focus on modern techniques that quantify cortical connectivity, which is widely believed to be abnormal in such disorders. Exploring the functional brain …


Development Of A Practical Visual-Evoked Potential-Based Brain-Computer Interface, Nicholas R. Waytowich Apr 2015

Development Of A Practical Visual-Evoked Potential-Based Brain-Computer Interface, Nicholas R. Waytowich

Biomedical Engineering Theses & Dissertations

There are many different neuromuscular disorders that disrupt the normal communication pathways between the brain and the rest of the body. These diseases often leave patients in a `locked-in" state, rendering them unable to communicate with their environment despite having cognitively normal brain function. Brain-computer interfaces (BCIs) are augmentative communication devices that establish a direct link between the brain and a computer. Visual evoked potential (VEP)- based BCIs, which are dependent upon the use of salient visual stimuli, are amongst the fastest BCIs available and provide the highest communication rates compared to other BCI modalities. However. the majority of research …


Cell Adhesion Biophysics On Dynamic Polymer Constructs, Andreas Kourouklis Mar 2015

Cell Adhesion Biophysics On Dynamic Polymer Constructs, Andreas Kourouklis

Doctoral Dissertations

The biophysical characteristics of cell adhesion from single protein to cell length scales have primarily been studied using purely elastic substrates. However, natural extracellular matrix (ECM) is viscoelastic and contains mobile components. In this work, we combined chemistry and cell biology tools to design and characterize laterally mobile viscoelastic polymer films that promote receptor-specific cell adhesion. Moreover, we used amphiphilic block copolymers that are end-labeled with RGD peptide ligands to allow for integrin-mediated cell adhesion. The addition of a trace hydrophobic homopolymer in the supported bilayer block-copolymer films is used to tune the lateral mobility of the films. NIH 3T3 …


Resting-State Functional Network Disruptions In A Rodent Model Of Mesial Temporal Lobe Epilepsy (Tle), Ravnoor Singh Gill Jan 2015

Resting-State Functional Network Disruptions In A Rodent Model Of Mesial Temporal Lobe Epilepsy (Tle), Ravnoor Singh Gill

Electronic Thesis and Dissertation Repository

Mesial temporal lobe epilepsy (TLE) is the most common form of drug-refractory epilepsy. The clinical application of non-invasively mapped networks using resting-state functional magnetic resonance imaging (rsfMRI) in humans has been rather limited due to heterogeneous (varying etiology, drugs, onset, latent period, etc.) patient groups. We employed a pharmacological (kainic acid) rodent model of TLE to measure the extent of functional network disruptions using rsfMRI, and study selected behaviors and olfactory to hippocampus transmission. Graph theoretical network modelling and analysis revealed significant increase in functional connectivity connectivity to the temporal lobe (hippocampus) in epileptic-rats compared to controls in the limbic …


Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke Jan 2015

Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke

Theses and Dissertations--Chemical and Materials Engineering

Cancer is designated as the leading cause of mortality worldwide and lung cancer is responsible for nearly 30% of all cancer related deaths. Over the last few decades mortality rates have only marginally increased and rates of recurrence remain high. These factors, among others, suggest the need for more innovative treatment modalities in lung cancer therapy. Targeted pulmonary delivery is well established for treating pulmonary diseases such as asthma and provides a promising platform for lung cancer therapy. Increasing local deposition of anticancer agents (ACAs) and reducing systemic exposure of these toxic moieties could lead to better therapeutic outcomes and …


Multi-Platform Arabinoxylan Scaffolds As Potential Wound Dressing Materials, Donald C. Aduba Jr Jan 2015

Multi-Platform Arabinoxylan Scaffolds As Potential Wound Dressing Materials, Donald C. Aduba Jr

Theses and Dissertations

Biopolymers are becoming more attractive as advanced wound dressings because of their naturally derived origin, abundance, low cost and high compatibility with the wound environment. Arabinoxylan (AX) is a class of polysaccharide polymers derived from cereal grains that are primarily used in food products and cosmetic additives. Its application as a wound dressing material has yet to be realized. In this two-pronged project, arabinoxylan ferulate (AXF) was fabricated into electrospun fibers and gel foams to be evaluated as platforms for wound dressing materials. In the first study, AXF was electrospun with varying amounts of gelatin. In the second study, AXF …


Ex Vivo Dna Cloning, Adam B. Fisher Jan 2015

Ex Vivo Dna Cloning, Adam B. Fisher

Theses and Dissertations

Genetic engineering of microbes has developed rapidly along with our ability to synthesize DNA de novo. Yet, even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. While technological advances have resulted in powerful techniques for in vitro and in vivo assembly of DNA, each suffers inherent disadvantages. Here, an ex vivo DNA cloning suite using crude cellular lysates derived from E. coli is demonstrated to amplify and assemble DNA containing small sequence homologies. Further, the advantages of an ex vivo approach are …


Experimental-Computational Analysis Of Vigilance Dynamics For Applications In Sleep And Epilepsy, Farid Yaghouby Jan 2015

Experimental-Computational Analysis Of Vigilance Dynamics For Applications In Sleep And Epilepsy, Farid Yaghouby

Theses and Dissertations--Biomedical Engineering

Epilepsy is a neurological disorder characterized by recurrent seizures. Sleep problems can cooccur with epilepsy, and adversely affect seizure diagnosis and treatment. In fact, the relationship between sleep and seizures in individuals with epilepsy is a complex one. Seizures disturb sleep and sleep deprivation aggravates seizures. Antiepileptic drugs may also impair sleep quality at the cost of controlling seizures. In general, particular vigilance states may inhibit or facilitate seizure generation, and changes in vigilance state can affect the predictability of seizures. A clear understanding of sleep-seizure interactions will therefore benefit epilepsy care providers and improve quality of life in patients. …


Target-Directed Biosynthetic Evolution: Redirecting Plant Evolution To Genomically Optimize A Plant’S Pharmacological Profile, Dustin Paul Brown Jan 2015

Target-Directed Biosynthetic Evolution: Redirecting Plant Evolution To Genomically Optimize A Plant’S Pharmacological Profile, Dustin Paul Brown

Theses and Dissertations--Neuroscience

The dissertation describes a novel method for plant drug discovery based on mutation and selection of plant cells. Despite the industry focus on chemical synthesis, plants remain a source of potent and complex bioactive metabolites. Many of these have evolved as defensive compounds targeted on key proteins in the CNS of herbivorous insects, for example the insect dopamine transporter (DAT). Because of homology with the human DAT protein some of these metabolites have high abuse potential, but others may be valuable in treating drug dependence. This dissertation redirects the evolution of a native Lobelia species toward metabolites with greater activity …


An Investigation Of The Relationship Between Axonal Injury, Biomarker Expression And Mechanical Response In A Rodent Head Impact Acceleration Model, Yan Li Jan 2015

An Investigation Of The Relationship Between Axonal Injury, Biomarker Expression And Mechanical Response In A Rodent Head Impact Acceleration Model, Yan Li

Wayne State University Dissertations

In the United States 1.4 million people sustain traumatic brain injury (TBI) each year, resulting in 235,000 hospitalizations and 50,000 fatalities annually. Traumatic axonal injury (TAI) is a serious outcome of TBI that accounts for 40-50% of hospitalizations due to head injury and one third of the mortality due to TBI, and it is difficult to diagnose and evaluate. The purpose of this dissertation is to determine mechanical injury predictors for TAI and identify potential biomarkers to evaluate TAI.

In this dissertation, a modified Marmarou impact acceleration injury model was developed to allow the monitoring of velocity of the impactor …


Systematic Study Of The Biological Effects Of Nitric Oxide (No) Using Innovative No Measurement And Delivery Systems, Weilue He Jan 2015

Systematic Study Of The Biological Effects Of Nitric Oxide (No) Using Innovative No Measurement And Delivery Systems, Weilue He

Dissertations, Master's Theses and Master's Reports

Nitric oxide (NO) is recognized as the most important small signaling molecule in the human body. An imbalance of NO is closely associated with many serious diseases such as neurological disorders, cardiovascular diseases, chronic inflammations and cancers. Herein two chemiluminescence-based devices (a real-time NO measurement device and a controllable NO delivery device) were developed to facilitate the NO quantitative study and obtain information for NO related drug design.

The first device used for real-time measuring NO(g) flux from living cells was developed and validated. The principle was to use a two-chamber design, with a cell culture chamber and a gaseous …