Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Antimicrobial Activity And Mechanism Of Amyloid Proteins And Synthetic Conjugated Polyelectrolytes, Fahimeh Maghsoodi May 2023

Antimicrobial Activity And Mechanism Of Amyloid Proteins And Synthetic Conjugated Polyelectrolytes, Fahimeh Maghsoodi

Nanoscience and Microsystems ETDs

Although the exact cause of Alzheimer’s disease (AD) is still unknown, it is widely considered that the accumulation of amyloid plaques composed of the amyloid-β (Aβ) peptide in the brain is linked to neurodegeneration. Co-localization of viral DNA with Aβ plaques, the association of brain infection and AD, and research indicating the protective effect of Aβ against bacteria and fungi in mice and human cells have led to the hypothesis that Aβ expression and deposition may be central to its function as an antimicrobial peptide (AMP). In my thesis research, we seek to elucidate how Aβ functions as an AMP …


Dectin-1 Mediated Mechanical Force Generation In Candida Albicans Fungal Pathogen Recognition, Rohan Choraghe Aug 2020

Dectin-1 Mediated Mechanical Force Generation In Candida Albicans Fungal Pathogen Recognition, Rohan Choraghe

Biomedical Engineering ETDs

Candida spp. pathogens continue to be a major health care burden with high mortality and exceeding a billion dollars in terms of healthcare cost. Candidainfection ranges from superficial dermatological infection to more serious blood stream infection in debilitated patients. One of the major lines of innate immune defense against Candidais phagocytosis. Dectin-1 is the antifungal receptor in myeloid cells responsible for most immune responses against fungi including phagocytosis. We looked into the signaling pathway coordinating this mechanical process downstream of Dectin-1. We found that Dectin-1 activation gives rise to a significant mechanical force generation mediated through RHOA-ROCK-MyosinII pathway. …


The Investigation Of Surface Structures On Various Pathogens And Their Interactions With The Human Immune System, Carmen M. Villalobos Aug 2020

The Investigation Of Surface Structures On Various Pathogens And Their Interactions With The Human Immune System, Carmen M. Villalobos

Biomedical Engineering ETDs

The cell surface is the first interface the host immune system encounters and

its investigation has led to a better understanding of cellular biology and types of

pathways that pathogens target in a host cell. The cell surface has evolved to include

many functions such as manipulation of the cytoskeleton, cell signaling, membrane

trafficking, adhesion, and integration into host tissue. The pathogens of interest are

the pathogenic fungus, Candida albicans, and the parasite, Giardia lamblia and we

investigate the consequences of drug treatments on the cell surface, leading to

promising new targets.


Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo Apr 2019

Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo

Biomedical Engineering ETDs

Understanding the structure-function relationship of membrane receptors is essential to comprehend the crosstalk between key signaling pathways. Aberrant trans-activation between receptors can lead to tumorigenesis. Two of these receptors known to be involved in cancer development are receptor tyrosine kinases (RTKs), RON (Recepteur d'Origine Nantais) and EGFR (Epidermal Growth Factor Receptor). There has been evidence of heterodimerization and crosstalk between these two receptors based on co-immunoprecipitation, however the structural requirements behind these interactions remain unknown. Structural studies could provide insights into these RTKs’ modes of dimerization and structure-function relationship. However, structural studies of full-length membrane proteins are often difficult due …


Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush Dec 2018

Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush

Nanoscience and Microsystems ETDs

As a cell mediated-process, valvular heart disease (VHD) results in significant morbidity and mortality world-wide. In the US alone, valvular heart disease VHD is estimated to affect 2.5% of the population with a disproportionate impact on an increasing elderly populous. It is well understood that the primary driver for valvular calcification is the differentiation of valvular interstitial cells (VICs) into an osteoblastic-like phenotype. However, the factors leading to the onset of osteoblastic-like VICs (obVICs) and resulting calcification are not fully understood and a more complete characterization of VIC differentiation and phenotypic change is required before treatment of valve disease or …


Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora Jul 2018

Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora

Biomedical Sciences ETDs

Adaptation of cancer cells to changes in the biochemical microenvironment in an expanding tumor mass is a crucial aspect of malignant progression, tumor metabolism, and drug efficacy. In vitro, it is challenging to mimic the evolution of biochemical gradients and the cellular heterogeneity that characterizes cancer tissues found in vivo. It is well accepted that more realistic and controllable in vitro 3D model systems are required to improve the overall cancer research paradigm and thus improve on the translation of results, but multidisciplinary approaches are needed for these advances. This work develops such approaches and demonstrates that new droplet-based cell-encapsulation …


A Multiscale Modeling Study Of The Mammary Gland, Joseph D. Butner Jul 2017

A Multiscale Modeling Study Of The Mammary Gland, Joseph D. Butner

Biomedical Engineering ETDs

Multiscale, hybrid computer modeling has emerged as a valuable tool in the fields of computational systems biology and mathematical oncology. In this work, we present an overview of the motivations for, and development and implementation of, three hybrid multiscale models of the mammary gland system and early stage ductal carcinoma in situ (DCIS) in the gland. Pubertal mammary gland development was described first using a two-dimensional, lattice-based hybrid agent-based model description of the mammary terminal end bud (TEB), and then with a three-dimensional lattice-free TEB model. Both models implement a discrete, agent-based description of the cell scale, and a continuum, …


Development Of In Vivo Systems For Detecting And Studying Ribosome Inhibition By Small Molecules, Shijie Huang Nov 2016

Development Of In Vivo Systems For Detecting And Studying Ribosome Inhibition By Small Molecules, Shijie Huang

Chemistry and Chemical Biology ETDs

The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome controlled green fluorescent protein reporter that produce fluorescent signal when the O-ribosome is inhibited. As a proof …