Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biomechanics and Biotransport

Theses and Dissertations--Biomedical Engineering

Microcirculation

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

The Rheological Impact Of Cell Activation On The Flow Behavior Of Neutrophils, Nolan M. Horrall Jan 2016

The Rheological Impact Of Cell Activation On The Flow Behavior Of Neutrophils, Nolan M. Horrall

Theses and Dissertations--Biomedical Engineering

Previously, it was reported that the morphological changes (pseudopod projection) that circulating neutrophils adopt due to cell activation raises peripheral vascular resistance by disrupting microvascular rheology. Studies utilized murine muscle preparations to link neutrophil pseudopod formation to cell activation and a viscous impact on hemodynamic resistance. But because of the complexity associated with the organization of the vasculature and microvasculature in tissues, it was unclear whether the effects of neutrophil activation on hemodynamic resistance were associated with the macro-/micro- circulation. This research describes an in vitro analysis using viscometry and microvascular network mimics (microporous membranes) to assess the rheological impact …


Three-Dimensional Endothelial Spheroid-Based Investigation Of Pressure-Sensitive Sprout Formation, Min Song Jan 2016

Three-Dimensional Endothelial Spheroid-Based Investigation Of Pressure-Sensitive Sprout Formation, Min Song

Theses and Dissertations--Biomedical Engineering

This study explored hydrostatic pressure as a mechanobiological parameter to control in vitro endothelial cell tubulogenesis in 3-D hydrogels as a model microvascular tissue engineering approach. For this purpose, the present investigation used an endothelial spheroid model, which we believe is an adaptable microvascularization strategy for many tissue engineering construct designs. We also aimed to identify the operating magnitudes and exposure times for hydrostatic pressure-sensitive sprout formation as well as verify the involvement of VEGFR-3 signaling. For this purpose, we used a custom-designed pressure system and a 3-D endothelial cell spheroid model of sprouting tubulogenesis. We report that an exposure …